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Abstract

Randomized Partial Checking (RPC) [6] is a protocol proposed by Jakobsson,
Juels and Rivest to validate operations performed by mix networks. Mix net-
works are often used in voting schemes to anonymize ballots. RPC is used to
publicly verify if ballots are decrypted correctly. RPC was a building block of
many voting schemes: Prêt à Voter [2], Civitas [5], Scantegrity II [3] as well as
voting-systems used in real-world elections (e.g., in Australia [1]).

In [6] it was argued that when k entries are modified by a mix server it would
be detected by RPC with probability:

1− 2−k.

Khazaei with Wikström [7] and later Küsters, Truderung and Vogt [8] noticed
that security guarantees of RPC scheme are off. The true probability of detect-
ing manipulation of k elements is only:

1−
(
3

4

)k

.

In this thesis we improve chances of detecting a mix server’s misbehavior.
When k errors are made, the proposed RPC finds them with probability of
1− 2−k as it was initially promised.

The proposed version of the protocol introduces minimal changes and does
not publish additional commitments. In conclusion, with the improved protocol
the elections results can be more accurate, meaning this version is more likely
to find any error than the original version was.

1 Introduction

In the following sections we are going to introduce mix networks and show how
the original Randomized Rartial Rhecking (RPC) works.

1.1 Mix networks

Mix networks on an abstract level are black box objects having n inputs and
n outputs. They perform two tasks at once. As the name suggests one of the
tasks is shuffling the inputs, the other one is processing them. In particular a
single stage of a mix network can permute and decrypt n cryptograms, which
were given as an input, providing n permuted messages as the output. One
can join multiple stages as long as it makes sense to process the output of the
previous stage further.
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Figure 1: An example 3-stage decryption mix network.

Among other applications, a mix network can be used where a need for
forgetting the origin of data arises. Chaum [4] suggests using mix servers for
anonymizing senders of e-mail messages. Others have suggested using a mix
network to anonymize votes cast during an election. This would enable election
organizers to publish anonymized ballots and allow external verification of the
election results.

One (boring) way to simulate a single stage mix network is to establish a
trusted party who follows the protocol:

Protocol 1 Mix–network

1. Publish a public key pk for encrypting inputs and keep a private key sk
for decrypting inputs. Any asymmetrical cipher can be used.

2. Wait for all inputs ⟨c1, . . . , cn⟩ to be delivered.

3. Establish a permutation π, apply it on the inputs getting
〈
cπ(1), . . . , cπ(n)

〉
and forget π.

4. Decrypt all the mixed inputs and return them〈
Decsk(cπ(1)), . . . ,Decsk(cπ(n))

〉
.

This straight forward protocol is fine as long as all users trust the mixer.
When a mix network follows the protocol, its input-output relation remains
secret and it would not violate the ballot secrecy. Not only that, its output is
just a permutation of its input, which implies that the set of collected ballots
and the set of counted ballots are equal.

Unfortunately in a real election it is usually impossible to find such a trusted
party. Not only a nefarious mixer can reveal parts of the input-output relation,
but also return anything instead of a properly decrypted input. Of course the
details of a particular attack depend on the operation/cipher used and meaning
of the processed data.

The two presented threats can be addressed. When joining many stages,
while each stage being operated by a different party’s server, we can fix the
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secrecy problem. Firstly, if any of the parties keeps its input-output relation
secret, the whole mix input-output relation is secret. From the perspective of
the voter his ballot secrecy is safe as long as he trusts any of the mixing parties
in following the protocol. On the other hand, proving a mix input-output re-
lation is indeed a permutation seems to be much more difficult. At first it can
seem impossible, as revealing the permutation will void the secrecy. Random-
ized Partial Checking of a mix network is a method of verifying a permutation
without revealing it.

1.2 Randomized Partial Checking

The precise definition is available in the original paper [6] by Jakobsson, Juels
and Rivest. For our purposes the simplified description below will be sufficient.

Let us redefine how the permutation on each stage is established. Instead
of randomly selecting one permutation π, we randomly select two (πL and πR),
then compose them (π = πR ◦ πL). This gives us the benefit of having a non-
publishable substage1, while not altering the distribution of the mixer’s choices.

πL πR

c1

c2

c3

c4

c′1

c′2

c′3

c′4

m1

m2

m3

m4

Figure 2: The left and right substages.

The protocol does not change much. Firstly, we do the mixing like previously,
but the mixer is required to publish mixing artifacts in form of commitments
– more on them later. After mixing and showing outputs and commitments
the verification starts. The verifier provides a mixer with n bits. Each bit
determines which commitment will be checked.

1a dual way to visualize it is to give each party two adjacent stages to operate without
publishing the data between them
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Protocol 2 Original RPC

1. Generate a key pair. Publish a public key pk for encrypting inputs and
keep a secret key sk for decrypting inputs.

2. Wait for all inputs ⟨c1, c2, . . . , cn⟩ to be delivered.

3. Establish a permutations πL and πR, apply them on the inputs while
decrypting them.

⟨c′1, . . . , c′n⟩ =
〈
Decsk

(
cπL(1)

)
,Decsk

(
cπL(2)

)
, . . . ,Decsk

(
cπL(n)

)〉
⟨m1, . . . ,mn⟩ =

〈
Decsk

(
c′πR(1)

)
,Decsk

(
c′πR(2)

)
, . . . ,Decsk

(
c′πR(n)

)〉
4. Publish the output ⟨m1, . . . ,mn⟩ and the commitments: CL(i) and CR(i)

for every i.

5. Wait for the challenge bits ⟨b1, b2, . . . , bn⟩. Depending on them open ap-
propriate commitments and show zero–knowledge proofs of the correct
decryption.

Commitments

A stage should publish 2n commitments. One for each permutation’s edge on
both left and right side. A commitment allows a verifier to interactively (with
the mixer) check the property. On the left i–th commitment CL(i) should reveal
an index n such that πL(n) = i. On the right i–th commitment CR(i) should
reveal the value πR(i).

A practical way to implement commitments would be to use a cryptographic
hash function h. For every commitment i, the mixer concatenates the commit-
ment’s value and some noise γi ∈ {0, 1}⋆ used as a salt. Let CR(i) = h(πR(i), γi).
To verify a commitment, the mixer publishes πR(i) and γi, and the verifier can
calculate h on its own and compare it with CR(i). On the left side the procedure
is similar.

Verification

After the output and the commitments are published the mixer gets a list of
n bits ⟨b1, b2, . . . , bn⟩. Depending on the bi he opens a commitment for left or
right edge. Formally if bi = 0 then the mixer opens CL(i) and if bi = 1 the
mixer opens CR(i). Once an edge ⟨n,m⟩ is revealed, the mixer must present
a non–interactive zero–knowledge proof that decrypted n–th item is same as
m–th item in the next column. A verification can only be done once.

5



πL πR

c1

c2

c3

c4

c′1

c′2

c′3

c′4

1

3

4

2

2

1

4

3

m1

m2

m3

m4

CL CR

Figure 3: Opening commitments for challenge bits ⟨1, 0, 0, 1⟩. Colored elements
are revealed. Gray elements remain secret.

A verifier now has no knowledge of any edge of permutation π. Both πL and
πR were randomly selected by the server, after choosing to reveal the left side
nothing is determined about the right side (since we do not validate the right
edge nor its decryption). Unfortunately, any unchecked commitment might be
hiding a manipulation. In some cases challenge bits will not be able to detect
an error.

Completeness

It is worth pointing out that a properly working decryption mix network is al-
ways able to pass the RPC verification. Again, since πL is indeed a permutation
we can commit to its inverse CL = π−1

L and symmetrically on the other side
CR = πR. We can also provide a zero–knowledge proof for each decryption since
we really have established the plain texts by decrypting them.

Soundness

In case of RPC, the verification can only be done once. Otherwise privacy would
be breached. As a result there is no soundness property for RPC, at least when
using the standard definition. Instead of asking about a number of rounds, we
can ask about a number of errors and associated probability of detecting any of
them. As we will show, this probability approaches 1.

1.3 Probability of detecting a manipulation

As Shahram Khazaei et al. noticed, the probability of detecting mix–network’s
malfunction should depend on a particular attack [7]. For now, suppose there
is a single modified entry on the output.

Single modified entry

Lemma 1. When a single entry was modified, it will be detected with the prob-
ability of at least 1

4 .
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Proof. Let us analyse left and right sides separately. WLOG we assume that the
mixer was supposed to decrypt the first input as the first output on a substage.
Instead he failed and replaced the output with its own text. If the entry was
modified on the left, one of the following cases happens:

1. We committed to CL(1) for which we cannot prove the correctness of de-
cryption. It means that when a verifier opens CL(1) we fail the verification.
This happens with the probability of 1

2 .

2. We committed to CL(1) for which we can prove the correctness of decryp-
tion. It means, that there exists an input which decrypted yields our
message. Notice that since only one entry was modified, we can prove the
correctness of decryption for all other entries. No commitment can point
to the first input. We committed n times to n−1 inputs and for one input
we committed at least twice. To detect a double commitment we have to
open both of them. This happens with the probability of 1

4 .

c1
...

c′1
...

1

CL

Dec(c1) ̸= c′1

c1
...

c′1
...

c′i
...

1

1

CL

Dec(c1) = c′1 = c′i

Figure 4: Both cases on the left visualized.

On the right side the cases are similar:

1. We committed to CR(1) for which we cannot prove the correctness of de-
cryption. It means that when a verifier opens CR(1) we fail the verification.
This happens with the probability of 1

2 .

2. We committed to CR(1) for which we can prove the correctness of decryp-
tion. It means, that there exists an output which matches our decrypted
first input. Again we committed n times to n − 1 outputs and for one
output we committed at least twice. To detect a double commitment we
have to open both of them, which happens with the probability of 1

4 .
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Figure 5: Both cases on the right visualized.

■

Multiple manipulations

Let us consider a mix network with multiple manipulated outputs. We will focus
on the left substage only, as the right substage is symmetrical. To calculate the
probability of finding any of the errors we will use induction. Let ai be the
probability of detecting any error when checking first i rows. Without checking
any rows no error will be detected, thus

a0 = 0

Now suppose probability of detecting any error among first i rows is ai. One of
these 3 cases takes place.

1. We link the (i+1)–th message to any cryptogram that is not an encrypted
message. When revealing CL(i+1) we will detect the manipulation as the
mixer would no be able to present a zero knowledge proof of decryption.

2. We connect the (i+ 1)–th message to a cryptogram that decrypts to our
message and the cryptogram has not been connected to any row with
same message. As this does not introduce any error it does not alter our
probability.

3. Like in the 2. case, but the the cryptogram had already j properly de-
cryptable messages linked.
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Figure 6: All three cases visualized for 3. step – a3 is calculated.

We can use these cases to make a recurrence relation:

ai+1 =


1
2ai +

1
2 , in the 1. case

ai, in the 2. case

ai + (1− ai)
j

2(j+1) , in the 3. case

In both 1. and 3. case we use the law of total probability. In the first case the
event is checking (i + 1)-th row and its complement. In the second finding an
error among first i rows and its complement.

Denote k as the total number of manipulations. Observe that it is equivalent
to number of times 1. case or 3. case occurred.

Lemma 2. The probability of detecting any of k manipulations is

an ≥ 1−
(
3

4

)k

Proof. Observe that relations in both (1. and 3.) cases are linear functions of
ai. For any ai ∈ [0, 1] the value in case 1 will not exceed 1

4 + 3
4ai and for any

ai ∈ [0, 1] and any j:

ai + (1− ai)
j

2(j + 1)
≥ ai + (1− ai)

1

2(1 + 1)
=

1

4
+

3

4
ai

Calculating ai+1 when 1. case or 3. case takes place (which is k times):

ai+1 ≥ 1

4
+

3

4
ai =⇒ an ≥ 1−

(
3

4

)k

■

2 Improving detection of errors in RPC

Although detecting an error with the probability of 1
4 is quite high, it can be

improved. Since what a verifier is struggling with is finding a witness for π
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not being a permutation, we can help him by forcing a mixer to publish more
commitments. A permutation is an endomorphic bijection by definition, which
means we can ask the mixer to commit to both an edge and its inverse without
revealing any more information.

Formally, on the left, the i–th commitment CL(i) still holds index j such that
πL(j) = i. Additionally, CL(j) holds πL(j). On the right side symmetrically
CR(i) does not change and CR(i) holds an index j such that πR(j) = i. In total
we published 4n commitments.

In verification part of the protocol the verifier still provides n challenge bits
⟨b1, b2, . . . , bn⟩. For each bit the mixer opens either left or right commitment.
The verifier checks if j = CL(i) and i = CL(j) (and similarly on the right
side). As before the mixer shows a non–interactive zero–knowledge proof that
decryption was correct.

Observe that commitments with bars are stronger than their barless coun-
terparts. The mixer is forced to make a bar–commitment for every predecessor
j and every successor i. If any of k successors is not committed, we can detect
it by asking to verify it with probability of 1

2 for each successor. Moreover, by
definition of a commitment (as a function) it must commit to every predecessor.
Thus, for given i by asking to reveal such j and a commitment CL(j) = i we are
already convinced that CL(i) = j and can skip publishing and verifying barless
commitments.

πL πR

c1

c2

c3

c4

c′1

c′2

c′3

c′4

m1

m2

m3

m4

2

4

3

1

2

3

1

4

CL CR

Figure 7: Opening commitments for challenge bits ⟨0, 1, 0, 0⟩. Colored elements
are revealed. Gray elements remain secret.
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The final protocol would look like this:

Protocol 3 Fixed RPC

1. The mixer establishes keys pk and sk, then he waits for all n inputs
⟨c1, c2, . . . , cn⟩ to be delivered.

2. The mixer chooses πL and πR, and decrypts the inputs twice: when shuf-
fling on the left and when shuffling on the right.

⟨c′1, . . . , c′n⟩ =
〈
Decsk

(
cπL(1)

)
,Decsk

(
cπL(2)

)
, . . . ,Decsk

(
cπL(n)

)〉
⟨m1, . . . ,mn⟩ =

〈
Decsk

(
c′πR(1)

)
,Decsk

(
c′πR(2)

)
, . . . ,Decsk

(
c′πR(n)

)〉
3. The mixer publishes all n outputs ⟨m1,m2, . . . ,mn⟩ and 2n commitments:

CL = πL and CR = π−1
R .

4. The verifier gives n challenge bits ⟨b1, b2, . . . , bn⟩.

5. The mixer reveals both j and CL(j) = i iff. bi = 0 and both j and
CR(j) = i iff. bi = 1. He also provides non–interactive zero–knowledge
proofs on the correctness of decryption on revealed edges.

6. The verifier validates data provided by the mixer.

Single error

Before looking at the general case, let us focus on single errors first.

Lemma 3. The probability of detecting a single error on the left is 1
2

Proof. Again (like in analysis of Jakobsson’s RPC) suppose a single error occurs
on the left side. WLOG let an error to occur in the first row. If b1 = 1 (meaning
we do not check the edge on the left), then no error will be detected (as the rest
of the rows are errorfree). When b1 = 0 one of the following cases takes place:

1. There is no index k such that CL(k) = 1. As a result we fail a verification.

2. CL(k) = 1 for some index k and decryption at the edge ⟨k, 1⟩ is incorrect.
Again in this case we fail the verification as well.

When b1 = 0 the mixer fails the verification. ■

The right side is symmetrical and has the same probability of detecting a
single error.
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Multiple errors

Lemma 4. If a single server manipulates k entries then FixedRPC protocol
will detect it with probability 1− 2−k.

Proof. For this analysis let k be the number of errors, the goal is to find what is
the smallest possible probability of detecting any of k errors. Again we will use
induction. Denote ai as the probability of detecting an error by verifying only
first i rows. Without verifying anything we have no proof of an error, therefore,

a0 = 0

When trying to calculate ai+1 one of the cases takes place:

1. No commitment has been published that links to (i + 1)–th message. In
other words: for all j CL(j) ̸= i+ 1 when verifying the left side or for all
j CR(j) ̸= i+ 1 when on the right side.

2. At least one commitment has been published that links to (i + 1)–th
message and the decryption on any of the edges was correct.

3. At least one commitment has been published that links to (i + 1)–th
message and the decryption on all edges was incorrect.

When choosing to verify a row, where the 1. case or the 3. case happened
the verification will always fail, and we can choose to verify this row with the
probability of a half. When at the (i + 1)–th row the 2. case happens we will
pass the verification regardless of the choice to verify the row or not. These
cases render a recurrence relation:

ai+1 =

{
1
2ai +

1
2 , in the 1. case and the 3. case

ai, in the 2. case.

and a solution

an = 1−
(
1

2

)k

■

Why does the improvement matters?

It is not unheard of for some election results to be close. There were several
elections where the winner had only a few votes more that his best opponent.
In such cases the mixer only has to alter very little votes to change the winner
and he might be encouraged to cheat.
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Number of Prob. of error detection Prob. of error detection
changed votes in original RPC2 in improved RPC

1 25.0% 50.0%
2 43.8% 75.0%
3 57.8% 87.5%
4 68.4% 93.8%
5 76.3% 96.9%
6 82.2% 98.4%
7 86.7% 99.2%
8 90.0% 99.6%
9 92.5% 99.8%
10 94.4% 99.9%
23 99.9% 1-1.2e-7
50 1-5.7e-7 1-8.9e-16

121 1-7.6e-16 1-3.8e-37

Figure 8: Comparison between original and improved RPC regarding the prob-
ability of detecting any error.

Observe that for a given probability of detecting any error, the original RPC
can change at least twice as many votes as the improved version.

This proposed version of RPC is a ,,drop in replacement” of original RPC
and the voting schemes using RPC should consider switching to this improved
version as it offers better detection of errors.

verte
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[1] Craig Burton et al. “Using Prêt à Voter in Victoria State Elections.” In:
EVT/WOTE 2 (2012).

[2] David Chaum, Peter YA Ryan, and Steve Schneider. “A practical voter-
verifiable election scheme”. In: European Symposium on Research in Com-
puter Security. Springer. 2005, pp. 118–139.

[3] David Chaum et al. “Scantegrity: End-to-end voter-verifiable optical-scan
voting”. In: IEEE Security & Privacy 6.3 (2008), pp. 40–46.

[4] David L. Chaum. “Untraceable Electronic Mail, Return Addresses, and
Digital Pseudonyms”. In: Commun. ACM 24.2 (Feb. 1981), pp. 84–90.
issn: 0001-0782. doi: 10.1145/358549.358563. url: https://doi.org/
10.1145/358549.358563.

[5] Michael R Clarkson, Stephen Chong, and Andrew C Myers. “Civitas: To-
ward a secure voting system”. In: 2008 IEEE Symposium on Security and
Privacy (S&P 2008). IEEE. 2008, pp. 354–368.

[6] Markus Jakobsson, Ari Juels, and Ronald Rivest. “Making Mix Nets Ro-
bust For Electronic Voting By Randomized Partial Checking”. In: (Mar.
2002).

[7] Shahram Khazaei and Douglas Wikström. “Randomized Partial Checking
Revisited”. In: (2013). Ed. by Ed Dawson, pp. 115–128.
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