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Abstract:

The ideal product AB in a ring is defined as the set of finite sums of products of the form ab.
The naivety of a pair of ideals A,B is defined as the smallest length of such sum needed to get the
whole AB. The following thesis contains the definition of naivety and the related based naivety, basic
lemmas regarding both, examples calculated in various rings, the conclusions drawn from attempts
to solve the problem, most promising methods, and related problems. Each section also contains a
commentary explaining its point and other non-tangible results of work on the problem of naivety.

Streszczenie:

Iloczyn ideałów w pierścieniu definiowany jest przez sumy skończone elementów iloczynu kom-
pleksowego tych ideałów. Przez naiwność pary ideałów będziemy rozumieć najmniejszą długość
takich sum potrzebną do otrzymania całości iloczynu tych ideałów. W niniejszej pracy przedsta-
wione zostały definicje naiwności oraz pokrewnej jej naiwności zbazowanej, podstawowe lematy
ich dotyczące, przykłady wyliczone w różnych pierścieniach, wnioski wynikające z prób rozwiązania
problemu, obiecujące metody, a także powiązane problemy. Każda sekcja zawiera również komentarz
wyjaśniający jej sens i inne niemierzalne rezultaty pracy nad problemem naiwności.
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1 Introduction
This section contains a summary of this thesis. I recommend reading this entire thesis in
linear order, except when briefly following references—it should be logically ordered, to the
best of my ability. In the electronic version, the references (or at least their numeral parts)
are clickable.

Section 2 starts by listing basic notational and naming conventions in order to avoid
possible confusion. It then presents the basic definitions used in this thesis—those of naive
product, naivety and based naivety. Those definitions are given thorough explanations of
their technical and intuitive meaning, as well as reasons for their existence. In the second
subsection, three similar problems are briefly described in order to further embed this thesis
in the existing mathematical environment.

Section 3 contains basic observations and lemmas regarding naivety and based naivety.
Many of them require only single-line proofs, but they are nonetheless useful, especially when
calculating the examples in the next section. All of them are the result of my work

Section 4 contains the aforementioned examples that I managed to calculate. Each ex-
ample is given a proof and notes that explain its significance. Two of them borrow parts
of their proofs from other works. The second subsection contains my general thoughts on
calculating naivety, resulting from attempts both successful and not. A large part of this
subsection is devoted to attempts using simple computer programs, including the description
of the program I used to calculate or verify several of the examples.

Section 5 contains the most promising ideas on how to approach naivety. Many of them
are not precisely formulated lemmas or conjectures, but rather specific perspectives which
could yield results if studied in depth. Each has its own problems, but also potential benefits.
I tried to write down as much of the intuition I developed over those last two years as possible.

Finally, section 6 contains a short conclusion of the thesis, summarizing the possible
directions in which the work could continue.
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2 Preliminaries

2.1 Definitions

2.1.1 Conventions

Throughout this article, we will assume that R is a ring (commutative, with unity), and A,B
are ideals in R—subsets closed under addition and absorptive (closed under multiplication
by any element of R). Elements of A and B will usually be denoted by, respectively, a and
b (with appropriate indices). The (ideal) product of A and B—defined as the set of finite
sums of all elements of the form ab—will be denoted by AB. Elements of AB will usually
be denoted by c, and other lowercase letters will generally denote elements of R. Most ideals
will be described by their generators: (a1, . . . , an) denotes the set of all (finite) "linear"
combinations of a1, . . . , an over R (i.e. combinations of the form r1a1 + · · · + rnan). A sum
with zero summands will be considered to equal 0. For a set X ⊆ R, X +X will denote the
sum set {x+ y : x, y ∈ X}, and rX will denote {ax : x ∈ X}.

We do not impose any special conditions on the rings. One could expect we would prefer
to work only in integral domains (rings without zero divisors), but that assumption does not
appear to be particularly helpful. Due to lemma 8, working with Noetherian rings appears to
be appropriate (and in fact most examples will be such), but it is not necessary for any of the
definitions to be well-founded—although infinite values appear more often in non-Noetherian
rings. We will simply assume the ideals are finitely generated on a case-by-case basis.

Commutativity does not appear to be particularly vital either, but assuming it will save
us from restating certain lemmas twice and wondering whether each used property of ideals
depends on it or not.

2.1.2 Naive product

We define the naive product of A and B as A ◦ B = {ab : a ∈ A, b ∈ B}, i.e. simply the
set of products of elements of A and B. Finite sums of elements of this set form AB. The
special name and notation is introduced in order to avoid confusion with the (ring-theoretic)
ideal product, as well as to highlight its role as the "seed" of the whole ideal product. Note
that A ◦ B always contains 0, and hence sums of length exactly n and of length up to n are
the same.

2.1.3 Naivety

We define the naivety of A and B—the central subject of this article—as the smallest natural
number n such that sums of n elements of A◦B form the entire AB. It may also equal ω = ℵ0

if the length cannot be bounded. In other words, it is the smallest sum length required to
build AB from A ◦B. Symbolically:

N (A,B) = min
n∈N

{
n :

{
n∑

i=1

aibi : ai ∈ A, bi ∈ B

}
= AB

}
.
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This is not a particularly well-motivated definition. Upon learning about the ideal prod-
uct, I simply asked about the required length of the sums, and it turned out to be unknown
(at least as far as I was able to determine). However, it may be useful if a need arises to cal-
culate some ideal product directly, as it provides a much simpler stop condition that checking
additive closure.

We define a representation (with respect to A and B) of an element c as any sum of
elements of A ◦ B that equals c. Note that it may contain zeros. A minimal representation
will be one that has the smallest length possible (which is a stronger condition than not
containing any zeros). Of course a minimal representation is rarely unique.

We may talk about the naivety of a single element c of AB—the length of the shortest
representation of c. We denote it by NA,B(c), omitting the comma when the separation of
the index into two ideals is clear. We take NAB(0) = 0, as 0 is represented by the sum with
zero elements. Then the naivety of A and B is the supremum of individual naiveties of each
element of AB. This simple formulation is helpful when considering the observations and
lemmas in the next section and highlights the fact that occasionally N (A,B) = ω.

We may informally say "the naivety of AB" or "the naivety of c over AB"—this is tech-
nically wrong, since naivety requires two separate ideals, and not just the resulting product.
The simplest way to see this is to take any example with N (A,B) > 1—even example 1—and
note that obviously N (AB, (1)) = 1 (see observation 9; (1) is the principal ideal generated
by 1, or the whole ring). As a result, saying "the naivety of C" would be ambiguous, but the
natural way of saying or writing AB as a product instead of a pair still presents both ideals,
so it can be used.

Note that even though A ◦ B is defined using multiplication, and naivety pertains to
a product of ideals, the problem itself is primarily an additive one. The naive product is
already an absorptive set (closed under multiplication by any element of R), and this quality
is generally hard to break, so all studied sets will retain it. As a result, it is the additive
properties that will be the issue. Moreover, one could easily generalize naivety by replacing
A ◦ B with some more general set in any abelian group, completely removing any mentions
of multiplication.

The inspiration for the name "naivety" comes from [1] (p. 419), where the author states
that we would (naively) like to define AB as A◦B. I have also considered alternative names:
"additive complexity"—as the naivety of a product determines how complicated it is in terms
of certain sums, "naive rank"—to mirror terms such as tensor rank or slice rank, or "strata
number"—the explanation for this one is given in 5.1. The name "naivety" has one small
flaw: we would expect the most naive products to be the simplest ones—but instead low
naivety means that the product is additively uncomplicated. Similarly, the term "naive"
is used to mean low naivety (e.g. the naive product is the set of elements of naivety 1).
However, since "naivety" does not yet have an established mathematical meaning, I hope
this minor confusion will be easy to get over.
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2.1.4 Based naivety

Note that we may rewrite the definition of naivety as:

N (A,B) ≤ n ⇐⇒ (∀c ∈ AB) (∃a1, . . . , an) (∃b1, . . . , bn) (c = a1b1 + · · ·+ anbn) .

We define based naivety with a simple quantifier switch:

NB(A,B) ≤ n ⇐⇒ (∃b1, . . . , bn) (∀c ∈ AB) (∃a1, . . . , an) (c = a1b1 + · · ·+ anbn) .

Instead of picking a representation for each element of AB, based naivety tries to pick a
naive basis (or basis for short) with n elements from B first, and then produce each element
by multiplying the basis elements by coefficients from A. Similarly to regular naivety, it can
also be infinite when a finite basis cannot be chosen.

This definition was motivated by example 5 (and the story is detailed there).

One could be tempted to define the based naivety of a particular element, as we did with
regular naivety above, but it would obviously be dependent on the particular choice of basis,
making such a definition notationally cumbersome at best. As of now, there seems to be
little reason for considering it.

Note that—unlike regular naivety—the definition of based naivety is not symmetric. The
choice to use "right based naivety" in this thesis is entirely arbitrary, and in most examples
it will actually be the same from both sides. Note also that we do not require the basis to
generate the entire B (but the entirety of AB must still be created from combinations over
A of its elements).

Even though the definition of based naivety is secondary to that of naivety, I still believe
it is worth considering. Most lemmas work just as well with based naivety as with regular
naivety, and it is usually easier to calculate, so it does not require much additional work to
include, while potentially providing certain bounds on naivety (described in 5.5), as well as
being interesting in its own right. The relationship between naivety and based naivety can
sometimes be quite intriguing as well.

The original name for based naivety was "represented naivety", and instead of basis I
used "representatives". However, this caused confusion with other terms (most notably repre-
sentation of an element), although it had the benefit of ease of referring to the basis elements
individually. I also considered "delegated naivety", as it avoids the confusion, but stresses
the interpretation that we choose representatives/delegates (as in representative democracy)
who will be appointed to take care of representing elements of AB. Another option was
"exhibited naivety", demonstrating the interpretation that based naivety is "clearly visible",
as we do not need to search for the representations too much. Finally, I also considered
"static naivety", referring to the fact that the factors from B are "statically" chosen and do
not change. Ultimately, "based naivety" gets the point across well enough, and since we will
rarely use any other meaning of "basis", it should not be confusing.
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2.2 Related problems

While trying to determine whether naivety is an open problem, and later when attempting
to seek out possible methods to apply to it, I have been referred to a few similar-sounding
problems. While none of them are direct generalizations nor specializations, the definitions
are similar enough to warrant a deeper investigation. I am not aware of an analogue of based
naivety for any of these problems, although for strength, it could be defined in a directly
analogous way (certain ideas for the other two are mentioned in 5.6).

2.2.1 Tensor rank

The first and best-known problem is the tensor rank (see [5]). A simple tensor (or tensor of
rank one) is a tensor that can be written in the form a1⊗a2⊗· · ·⊗an. We define the rank of
a tensor A (not to be confused with its order n) as the minimum number of tensors of rank
one that sum to A. The parallel between this definition and that of naivety is clear, although
naivety as defined above is analogous only to the case of tensors of order 2. Section 5.6
discusses a concept similar to "increasing the order", but it seems likely that many methods
usable for tensor rank could be too general (and hence too weak) for (standard) naivety, since
they include higher orders.

Another issue is that tensor rank is not yet well-understood. Calculating it is generally
NP-hard ([6]), and there does not seem to be many strong bounds. Nonetheless, due to this
problem’s relative popularity and importance, researching possible connections and attempt-
ing to copy methods may yield some results. Moreover, this problem is directly related to
the computational complexity of matrix multiplication, which may turn out to be useful for
naivety (see example 9 and section 5.4).

2.2.2 Slice rank

A slice is defined as any function in many variables that is of the form

f(x1, . . . , xn) = f1(xi) · f2(x1, . . . , xi−1, xi+1, . . . , xn) (for any i ∈ (1, . . . , n)).

Intuitively speaking, it is a sort of "separable" function, one that can be described as a
simple modification of a function in less variables. Predictably, the slice rank of a function g
is defined as the lowest number of slices that sum to g. Usually, it is defined and studied in
the context of tensors.

Slice rank has a definition that is also obviously similar to the definition of naivety.
However, from our perspective, it has a similar problem to tensor rank—naivety corresponds
to the simplest case of order 2, which may again result in typical methods being too general.
Moreover, in the case of slice rank, the fact that we can choose any of the variables appears
to be rather fundamental, and that aspect is completely lost in the case of order 2. Again,
a possible rectification of this problem is discussed in 5.6.
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Slice rank is also a far newer concept, introduced only in 2016 ([3]). This means that it
may not yet have an abundance of methods we could attempt to appropriate for naivety, but
also that if any results on naivety could be adapted for slice rank, they could more likely be
novel. Moreover, slice rank is of interest due to the applications in combinatorial problems,
so even if its methods do not turn out to be useful for naivety, it may turn out to be a useful
tool in additive combinatorics by itself.

2.2.3 Strength of polynomials

The strength of a homogeneous polynomial (in many variables) is the most directly similar to
naivety. It is defined as the length of the shortest representation p = f1g1+ · · ·+ fkgk, where
fi, gi are homogeneous polynomials of degree 1. The definition looks the most alike due to
using basic two-factor products (although technically it could be defined using products of
more polynomials as well). Nonetheless, it still has a problem similar to choosing the excluded
variable when defining a slice: this time we can choose the degree of each fi (which forces
the degree of gi). This means that it translates relatively well into naivety, but not entirely
directly: in a polynomial ring K[x1, . . . , xn] let I = (x1, . . . , xn) be the ideal generated by all
monomials of degree 1. Then for a homogeneous polynomial p of degree d, we have

str(p) ⩽ min
k+l=d

NIk,Il(p).

The proof of this fact is straightforward: each naivety-representation of p over Ik, I l is also a
strength-representation, since if any of the used elements of Ik had any terms of degree higher
than k, they would ultimately need to cancel out (as p is homogeneous of degree k + l), so
they may as well be skipped altogether. Due to the aforementioned possibility of choosing a
different degree for each fi, this inequality is not likely to become an equality (unless d = 2,
as seen in example 9), but it is nonetheless the only (somewhat) closed-form relation between
naivety and some preexisting problem that we have. Moreover, a lot of the simplest examples
use (potentially modified) polynomial rings, which may mean that both the strength itself
and methods used for it may be applicable. And conversely, results on naivety could provide
rather strong upper bounds on strength (since the minimum over a few different pairs of
ideals may be quite low even if the individual bounds are not great on average).

The subject of strength of polynomials is also a relatively new one. It is nicely described
in [2], from whence we took a part of the proof of example 9. The fact that two similar terms
(tensor rank and strength) have been introduced recently is rather optimistic for naivety—
both suggesting that it may be a novel question, and embedding it in a new, dynamic current.

3 Basic properties
This section contains various lemmas and observations that can provide bounds on naivety
and based naivety. One important thing to note about them is that while we can often get
relatively tight upper bounds—either from these lemmas, or by finding a basis—finding a
good lower bound is quite problematic, and usually requires finding an element with high
naivety.
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Even though in most cases bounds on both naivety and based naivety are provided, the
latter is usually an afterthought, added simply because it did not create much additional
effort. The same is true for the examples in the next section. Nonetheless, future results
could potentially show that bounds on based naivety are as important as those on regular
naivety (see 5.5).

For simplicity, this section assumes the reader is acquaintanced with the simple interpre-
tation that the naivety of A and B is the supremum of individual naiveties of all elements
of AB.

3.1 Simple observations

Observation 1. If AB contains an irreducible element and both A and B are proper ideals,
then N (A,B) > 1.
Obviously an irreducible element cannot be represented by a sum of length 1, i.e. a product.

This observation will commonly be used in examples to provide a lower bound of 2 on
naivety and based naivety.

Observation 2. Sums of elements of A ◦B shorter than N (A,B) cannot give an ideal.
We already have absorptivity, but not closure under addition. If the set (AB)l of all sums up
to length l < N (A,B) was closed under addition, then adding elements of A ◦ B would not
create anything new (as elements of A ◦B are those with naivety 1, and hence are contained
in (AB)l), and it would mean that (AB)l = AB and N (A,B) = l.

Observation 3. Naivety of elements is subadditive.
If

c(1) = a
(1)
1 b

(1)
1 + · · ·+ a

(1)
k b

(1)
k

and
c(2) = a

(2)
1 b

(2)
1 + · · ·+ a

(2)
l b

(2)
l ,

then
c(1) + c(2) = a

(1)
1 b

(1)
1 + · · ·+ a

(1)
k b

(1)
k + a

(2)
1 b

(2)
1 + · · ·+ a

(2)
l b

(2)
l .

Obviously the naivety of c(1) + c(2) will usually end up much smaller than k + l, since there
may be other representations. In particular, k + l may be greater than N (A,B).

Observation 4. Naivety of elements does not increase with multiplication.
If c = a1b1 + · · · + akbk, then rc = ra1b1 + · · · + rakbk, and since A is an ideal, and hence
absorbtive, rai ∈ A (we could also absorb the r into B). This is a direct result of A ◦ B (as
well as other sets, such as the results of sums up to a particular length) being absorptive, and
shows that multiplication is rarely an issue. Of course we may have NAB(rc) < NAB(c)—
take for instance example 2 (R = Z[

√
−5], A = (2, 1 +

√
−5), B = (2, 1 −

√
−5)), where

NAB(4) = 1, since 4 = 2 · 2 and 2 ∈ A, 2 ∈ B, but NAB(2) = 2 (since 2 is irreducible, see the
example’s proof).
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Observation 5. Naivety of an element does not increase when we send the element through
a homomorphism. In other words, when passing from R to R/I, N (A,B) ⩾ N (A/I,B/I).
The same is true for based naivety.
If f is a homomorphism and c = a1b1+ · · ·+ akbk, then f(c) = f(a1)f(b1)+ · · ·+ f(ak)f(bk).
If (b1, . . . , bk) is a valid basis, then so is (f(b1), . . . , f(bk)).

Quotient rings can be very convenient for creating examples. Often, it is useful to think
in the other direction: the naivety in a quotient ring gives a lower bound for naivety in the
original ring.

Observation 6. Nased naivety is never smaller than regular naivety.
Regardless of the choice of basis (b1, . . . , bk), c = a1b1 + · · · + akbk is also a perfectly valid
representation of c. This is not a particularly surprising observation, given that the definition
of based naivety is directly harder to satisfy than that of naivety.

Observation 7. If R = R1 ×R2, A = A1 × A2, B = B1 ×B2, then
N (A,B) = max {N (A1, B1),N (A2, B2)} and NB(A,B) = max

{
NB(A1, B1),NB(A2, B2)

}
.

This observation is a direct consequence of the fact that in a Cartesian product, the first and
second coordinate are entirely independent. This means that we must find a representation
for both coordinates of an element of AB separately, then combine them in any way we
choose (potentially adding zeros to the shorter one), and we obviously may not get a shorter
representation than either of the constituent representations. The same logic applies to based
naivety, as we need to choose a basis on each coordinate separately.

Note that if R = R1 × R2, then every ideal is of the form I = I1 × I2. This follows
from absorptivity: we may multiply an ideal by (1, 0) or (0, 1) to show that each ideal
contains its projections on both axes, and since it is closed under addition, it also contains
any combination of values on each coordinate.

This observation remains true if R is a product of more than two rings. It also remains
true if we replace the Cartesian product with an infinite direct sum, with the proof practically
unchanged (the Cartesian product and direct sum of rings are the same in the finite case).
An infinite Cartesian product of rings may have "elements with infinite naivety" (if they have
increasing naiveties of each coordinate), but the observation remains valid if we replace the
maximum with supremum.

This observation is quite useless for creating interesting examples—it can only be used
to show that an example can be reduced to a set of simpler ones. Its only clear use lies in
building big ugly examples with infinite naivety (although the only big ugly one included in
this thesis—example 12—uses a different technique).
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3.2 Basic lemmas

Lemma 8. (The generator bound) Let B be finitely generated, B = (b1, . . . , bk). Then
N (A,B) ⩽ k and NB(A,B) ⩽ k. The bound on naivety also holds if A = (a1, . . . , ak).
The proof is not complicated: note that if c = α1β1+ · · ·+αlβl (αi ∈ A, βi ∈ B, c ∈ AB), for
each βi we have βi = r

(i)
1 b1+ · · ·+ r

(i)
k bk, and thus we can reorganize the entire representation

into

c = (r
(1)
1 α1 + r

(2)
1 α2 + · · ·+ r

(l)
1 αl)b1 + · · ·+ (r

(1)
k α1 + r

(2)
k α2 + · · ·+ r

(l)
k αl)bk

and thus NAB(c) ⩽ k for each c ∈ AB. Of course we may also do the same with the roles of
A and B reversed.

Alternatively, one could simply note that (b1, . . . , bk) is a valid basis, thus giving the
bound on based naivety, and through observation 6, also on regular naivety.

Despite its simplicity, this is probably the most important statement in this entire thesis.
Since in most cases the considered ideals are quite simple—which often means they have rela-
tively few generators—the bounds are quite tight. Moreover, since ideals are most commonly
described using generators, this lemma is often easily applicable. However, despite having so
few possible values, naivety remains difficult to calculate precisely.

Observation 9. If A or B is a principal ideal (i.e. is generated by one element), then
N (A,B) = 1. If B specifically is principal, then also NB(A,B) = 1.
This is a direct result of the generator bound. In particular, this means that principal ideal
domains are of no interest to us (that includes euclidean rings and fields). There are also
principal ideal rings that are not integral domains, but those are similarly boring for us.

Lemma 10. Let AB be finitely generated, AB = (c1, . . . , cn). Then N (A,B) ⩽
∑n

i=1NAB(ci)
and NB(A,B) ⩽

∑n
i=1NAB(ci).

The proof is mostly analogous to that of the generator bound: let ki = NAB(ci). For any c
in AB, we have c = r1c1 + · · ·+ rkck. For each i we can write

rici = ria
(i)
1 b

(i)
1 + · · ·+ ria

(i)
ki
b
(i)
ki

and sum these to get a representation of c of the specified length. We also have a basis{
b
(i)
k : i ∈ (1, . . . , n), k ∈ (1, . . . , ki)

}
of the specified size—since an appropriate part of it

(corresponding to the given i) can produce each ci, it can produce any element of AB.

This is a sort of symmetric lemma to the generator bound, although not nearly as useful.
It usually does not provide similarly tight bounds (since each generator can be "worth" more
than 1), but is can be useful in cases where AB luckily ends up with fewer generators than
either A or B (such as observation 11 below). However, using this lemma effectively requires
finding a good set of generators, which may not be trivial.
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Observation 11. If AB = (c) is principal, then N (A,B) = NB(A,B) = NAB(c).
This is a direct result of lemma 10 (since we obviously cannot have N (A,B) ≤ NAB(c)).
It allows us to shorten our calculations when AB happens to be principal (which is not
particularly uncommon in Noetherian rings).

Lemma 12. In an integral domain, if A1, A2 are in the same class, and B1, B2 are in the
same class, then N (A1, B1) = N (A2, B2) and NB(A1, B1) = NB(A2, B2).
In an integral domain R, we say that ideals I, J are in the same class, if there are r, s ∈ R\{0}
such that rI = sJ . In certain types of rings (e.g. algebraic integer rings), the number of such
classes is an extensively studied question.

The proof of the lemma follows from the fact that multiplication in an integral domain
is cancellable, i.e. ab = ac =⇒ b = c. Let r1A1 = r2A2 = A and s1B1 = s2B2 = B
(r1, r2, s1, s2 ∈ R \ {0}). We will show that N (A1, B1) = N (A,B) (and the proof for A2, B2

is entirely analogous).

It is clear that N (A1, B1) ⩾ N (A,B)—one may simply multiply each representation
over A1, B1 by r1s1 to get a representation (of the same length) over A,B, and this provides
representations for all elements, because AB = r1s1A1B1, i.e. each element of AB is of the
form r1s1c for c ∈ A1B1.

Now assume that N (A,B) = n. Then there is a c ∈ A1B1 such that NAB(r1s1c) = n or
r1s1c = r1a1s1b1 + · · · + r1ans1bn (ai ∈ A1, bi ∈ B1)—again because AB = r1s1A1B1. Then
the cancellation property implies that c = a1b1 + · · · + anbn. But since c was an arbitrary
element of A1B1, that means that N (A1, B1) ⩽ k.

The proof for based naivety is analogous: we have NB(A1, B1) ⩾ NB(A,B), since any
basis of A1, B1 can be multiplied by s1 to get a basis of A,B. If we had a smaller basis of
A,B, we could similarly use the cancellation property to get a basis of the same size of A1, B1

(along with representations of every element, proving that it is valid).

This proof is effectively just an application of the fact that multiplication by a given
non-zero element in an integral domain is a module isomorphism (of the above ideals).

This lemma is of particular use in the aforementioned algebraic integer rings, as their
class numbers are known in many cases, and are generally low (and always finite). This
means that we can gain complete knowledge of naivety in the entire ring by checking just a
few cases—especially that by observation 9, any case involving the class of principal ideals is
trivial.

12



4 Examples and computations

4.1 Examples

This section contains the examples I have managed to compute while studying the problem.
Each example will be presented by listing the ring it takes place in, the ideals A and B, and
the resulting naivety and based naivety. A proof and notes detailing the significance and
important conclusions of the given example will follow. Certain examples will also depend
on a parameter—in that case, it is understood that the example remains true for any value
of it.

In most cases, the upper bound on based naivety will simply be provided by explicitly
showing a basis (and a proof that any element of AB can be represented as a "linear"
combination of its elements). The lower bound will be attained by various means, depending
on the particular example.

Example 1. R = Z[x] (polynomials over integers)
A = (x, 2) (polynomials with an even constant term)
B = (x, 5) (polynomials with a constant term divisible by 5)
AB = (x, 10) (polynomials with a constant term divisible by 10)
N (A,B) = 2, NB(A,B) = 2

Proof: Since 2x and 5x are obviously in AB, then so is their combination x. Obviously
10 = 2 ·5 is in AB as well, and any element of AB clearly has a constant term divisible by 10.
This proves that AB = (x, 10).

The generator bound limits naivety and based naivety by 2, since B has two generators.
Then, x2 + 10 = (x · x) + (2 · 5) is an irreducible element in AB, so by observation 1 neither
naivety nor based naivety can be 1. Since the upper and lower bounds are equal, we have
successfully calculated both naivety and based naivety.
Notes: This is an extremely simple example, proving that at least sometimes we do not
have AB = A ◦B, and hence the problem of naivety is not trivial.

Example 2. R = Z[
√
−5] (the ring of algebraic integers in Q(

√
−5))

A = (2, 1 +
√
−5)

B = (2, 1−
√
−5) (the complex conjugate of A)

AB = (2)
N (A,B) = 2, NB(A,B) = 2

Proof: In algebraic integer rings such as R, we can define a multiplicative norm, which is 1
only on units (see [1], p. 414). In R, an element a+ b

√
−5 has norm a2 + 5b2.

The generator bound limits naivety and based naivety to 2, and 2 is an irreducible element
in AB—it has norm 4, and there are no elements with norm 2 (the equation a2 + 5b2 = 2
has no integer solutions), but the norm is multiplicative.

13



Notes: This example was taken from [1] (p. 420), which means that it is the most verified
of all examples. The fact that algebraic integer rings have such a norm appears to be
quite powerful, but I have not yet managed to use it for anything better than invoking
observations 1 and 11.

Since R has ideal class number 2 ([1], p. 431), it only has two classes of ideals—principal
and non-principal. Since by observation 9 any product involving a principal ideal has naivety
one, we have now determined the naivety of any pair of ideals in the entire ring (by lemma 12).

Example 3. R = Z[xR0+ ] (the ring of "polynomials with nonnegative real exponents" over Z,
or the combinations over Z of all nonnegative powers of x)
A = B = (x, x1/2, x1/3, x1/4, . . . ) (the ideal of all elements without a free term)
A2 = A
N (A,A) = 1, NB(A,A) = ω

Proof: Each element c of AB = A can be represented as a product of x raised to a power
smaller than the smallest power appearing in c and an appropriate second factor.

We cannot have a finite basis, since then we could pick an exponent lower that the lowest
in all of them, and we could not represent it—but (x, x1/2, x1/3, x1/4, . . . ) is a countable basis.
Notes: This is an example of naivety equaling one, even though neither of the ideals is
principal (if A was principal, we could take x raised to a power smaller than the smallest
exponent in the generator, which is a contradiction). However, the ring is obviously not
Noetherian (in fact, A is not finitely generated).

Example 4. R = Z[x]
A = B = (xn, 2xn−1, 4xn−2, . . . , 2n)
A2 = (x2n, 2x2n−1, 4x2n−2, . . . , 22n)
N (A,A) = 2, NB(A,A) = 2

Proof: The basis is (xn, 2n)—the first n generators of A2 are divisible by xn, and the last
n by 2n, and the required coefficients (for any combination of these generators) are easily
verified to be in A. By Perron’s irreducibility criterion we know that x2n + 22n+1x2n−1 + 22n

is an irreducible element in AB.
Notes: Since A cannot be generated by less than n + 1 generators (since each new power
of x requires more precision than the previous one), this example shows that naivety (and
based naivety) can remain small even if the ideals have a lot of generators.

Note also that the elements of the basis have a slight "overlap", as the middle term is a
multiple of 2nxn. This may suggest that perhaps based naivety is actually "slightly smaller
than 2" in some complicated sense (which could mean, for instance, that we may worsen this
example slightly and still have NB = 2).
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Example 5. R = Z[x]/(xn+1)
A = B = (xn, 2xn−1, 4xn−2, . . . , 2n)
A2 = (2nxn, 2n+1xn−1, 2n+2xn−2, . . . , 22n)
N (A,A) = 1, NB(A,A) = 1

Proof: The basis needs only a single element: 2n, as all terms of each element of A2 are
divisible by it (and the other factor is again easily verified to be in A).
Notes: This is a simple modification of the previous example. We could also use the similar
modification Z[x]/(xn) (which is a quotient ring of the current R). Doing so would clearly
present the natural behavior that setting one element of the basis to equal zero has reduced
the based naivety by 1 (as compared to taking it in Z[x]). However, we still have NB = 1
even with the slightly bigger ring Z[x]/(xn+1) (but not with Z[x]/(xn+2)), which may or may
not be related to the previous example’s based naivety being "slightly smaller than 2".

This is also (almost) the example that motivated based naivety. For n = 2 and taken
modulo 16, it is finite and small enough to be calculated by brute force on a blackboard.
While searching for the decomposition (over A,B) of each of the 8 elements of AB, I noticed
that they were all divisible by 4, which is an element of A. Gradual expansion of the example
into example 4 and then example 7 has shown the usefulness of starting by trying to find
a basis and led to the birth of based naivety, as well as some strong conjectures detailed
in further sections.

Example 6. R = Z[x]/(210, x3)
A = (x2, 7x, 14)
B = (x2, 5x, 15)
AB = (x2, 35x)
N (A,B) = 1, NB(A,B) = 1

Proof: Note that 15 · x2 ∈ AB and x2 · 14 ∈ AB, and so their difference x2 is also in AB.
Similarly we get 35x ∈ AB, and the linear terms of all elements of AB are divisible by 35
(and we may easily get any multiple of 35). All free terms of elements of AB are multiples
of 15 · 14 = 210, and hence equal 0 in R, which shows that AB = (x2, 35x).

The single basis element is x2 + 5x + 15. Let ax2 + 35bx ∈ AB. We need to find
d, e, f ∈ Z210 such that (dx2 + 7ex+ 14f)(x2 + 5x+ 15) = ax2 + 35bx. We may rewrite that
as: {

b = 2f + 3e

a = 14f + 35e+ 15d

or, equivalently {
2f = b− 3e

a = 7b+ 14e+ 15d.

So we only need to find d, e such that 15d+14e = a−7b and e has the same parity as b (since
we need to divide b− 3e by 2 to get f). But since 14 and 15 are coprime, fulfilling the first
condition is always possible, and we can fulfill the second by adding 14 to d and subtracting
15 from e.
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Notes: This modifies example 7 in a very similar fashion to example 5 modifying example 4
(I apologize for the awkward ordering, but it could not be avoided). Note that this makes
the example finite (and so does a quotient with an exponent higher than 3, which seems to
keep N = 2), so it could be verified by a computer. Originally the ideals were (x2, 2x, 6)
and (x2, 5x, 35), but the current ordering of the prime factors has the smallest amount of
calculations (least cardinality of A and B) while not being meaningfully different.

Example 7. R = Z[x]/(210)
A = (x2, 7x, 14)
B = (x2, 5x, 15)
AB = (x2, 35x)
N (A,B) = 2, NB(A,B) = 2

Proof: The proof that AB = (x2, 35x) can be copied from example 6. The element x2+35x
does not reduce into a product of the form ab with a ∈ A, b ∈ B (which is a finite check,
since the degrees of a and b are bounded by 2), so N (A,B) > 1. The basis has two elements:
x2 + 5x + 15 and x2. We will now prove that it is valid (by expressing any element of AB
using this basis).

We know from example 6 that x2 + 5x + 15 can be used to set the linear and quadratic
terms to whatever we need (with a suitably chosen coefficient α1 ∈ A of degree ⩽ 2). Note
that if we added a new term cx3 to α1, it would not change those two terms, but would
change the cubic term of the result by 15c. So, for any element of AB, we first set the linear
and quadratic terms, as well as the cubic term modulo 14 (= 210/15) to whatever we need
by manipulating α1, and then adjust the coefficient α2 for x2 to set the cubic term modulo
15 and all higher terms to whatever we need without breaking the other coefficients (α2 does
not have a constant term; its linear term is divisible by 7, so we can change the resulting
cubic coefficient by 14 easily).
Notes: This is effectively a variant of example 4, modified to have A ̸= B and generally be
a bit more complicated. It could most likely be expanded in a similar fashion by using more
primes, although adapting the same proof would likely be extremely tedious. The quotient
by 210 appears necessary to keep naivety lower than 3.

Both here and in example 4 the basis is built from the generators of B in a very simple
fashion, which may suggest that looking at "simple" combinations of generators is a way to
find the basis in general.

Example 8. R = C[x1, . . . , xk, y1, . . . , yl]/((xixj|i, j ∈ {1, .., k})+(yiyj|i, j ∈ {1, . . . , l})+I3)
(where I3 is the ideal generated by all monomials of degree 3; we want to only consider
monomials of the form xy in AB)
A = (x1, . . . , xk)
B = (y1, . . . , yl)
AB = (xiyj|i ∈ {1, .., k} , j ∈ {1, . . . , l})
N (A,B) ⩽ min {k, l} , NB(A,B) = l, NB(B,A) = k
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Proof: Naivety is limited by the generator bound (and finding a lower bound is both difficult
and not important for the purposes of this example). Both based naiveties are similarly
bounded by the generator bound, but proving the lower bound is the important part.

Note that we may consider elements of A and B to only contain monomials of degree 1—
any monomials of higher degree vanish after multiplication by an element of the other ideal.
Assume we could choose a basis with less than l elements from B—(b1, . . . , bm). Then, since
B (with the above restriction) is also a vector space over C of dimension l, we could find an
invertible linear transformation F which would send b1, . . . , bm to, respectively, y1, . . . , ym.
But such a linear transformation induces a ring isomorphism. This means that since now
any element with yl cannot be represented, the pre-image of these elements could not be
represented by the original basis.
Notes: This example serves two functions: it shows that based naivety is indeed not sym-
metric, and it provides a proof of the lower bound on based naivety for the following examples.

Example 9. R = C[x1, x2, . . . , xn]/A
3 (we want to ignore anything of degree 3 or higher)

A = B = (x1, x2, . . . , xn)
A2 = (x2

1, x
2
2, . . . , x

2
n, x1x2, x1x3, . . . , x2x3, . . . , xn−1xn) (the ideal generated by all monomials

of degree 2, which is the ideal of all homogeneous polynomials of degree 2)
N (A,B) =

⌈
n
2

⌉
, NB(A,B) = n

Proof: The upper bound on based naivety follows from the generator bound, while the lower
bound uses a very similar argument as example 8—if the basis had less than n elements, after
the linear transformation, we would not be able to represent anything containing x2

n (since the
coefficient of each element of the basis can only provide us with x1

n—see below). Calculating
naivety is a little more difficult.

We may use a restriction similar to the one in example 8. Since any monomial of degree
3 or higher equals 0 in R, we may consider A to be effectively the set of homogeneous
polynomials of degree 1, while A2 is the set of homogeneous polynomials of degree 2. This
means that the naivety and strength of each element of AB are one and the same. This
allows us to use the proof from [2], which I will now present:

First, we note that homogeneous polynomials of degree 2 (in n variables, over C) are
in correspondence with symmetric matrices (n× n, over C): a matrix A corresponds to the
polynomial (x1, . . . , xn)A(x1, . . . , xn)

⊤. This correspondence is bijective.

Recall that the rank of a matrix is equal to the smallest number of rank one matrices
whose sum is the given matrix, and that rank one matrices are precisely outer products of
vectors vw⊤ (vectors are vertical). Choose a homogeneous quadratic polynomial f . Let A
be the matrix corresponding to it. Then we have the following equivalence

str(f) ⩽ k ⇐⇒ A is a sum of k matrices of rank 2 ⇐⇒ rnk(A) ⩽ 2k

which we will now prove.
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The rightward implications are relatively simple: a polynomial of stregth at most k
has a representation as a sum of k products of polynomials. Each product of polynomials
corresponds by the above formula to a matrix of rank at most 2 (a sum of two outer products):

2 · (x1, . . . , xn)v · (x1, . . . , xn)w ↔ vw⊤ + wv⊤.

Finally, a sum of k matrices of rank at most 2 has a rank at most 2k.

Now, assume rnk(A) ⩽ 2k. The leftward implications use the well-known fact that a
symmetric matrix A over C can be represented as V DV ⊤, where D is diagonal and V is
invertible. As such, we may write D = D1 + · · · + Dk, where each Di has at most two
non-zero elements: positions number 2i − 1 and 2i on the diagonal. That means that each
Di corresponds to a polynomial that is of the form ax2+ by2. But over C, such a polynomial
is product of two linear polynomials: ax2 + by2 = (

√
ax + i

√
by)(

√
ax− i

√
by). This means

that the polynomial corresponding to A can be represented as a sum of k products, each of
them corresponding to a matrix V DiV

⊤.

I have also found a somewhat simpler restatement of this proof. Take a polynomial
p ∈ AB. By Lagrange’s method of completing the square, we may rewrite it as p21 + p2∼,
where p2∼ does not contain x1. In Lagrange’s method, we may sometimes need to substitute
the variables, but that does not affect this proof. By applying this again to p2∼, we get
p = p21 + p22 + p3∼. Continuing this process, we get p = p21 + p22 + · · ·+ p2n, where each pi does
not contain any xj with j < i. Since we are over C, a sum of two squares is a product (just
like above), and a single square is obviously a product as well, so we get NA,A(p) =

⌈
n
2

⌉
.

Notes: This example serves to both tie naivety and strength together, as well as provide
certain insights on based naivety (which will be detailed in 5.5). The quotient by A3 appears
necessary to keep naivety lower than n—although I do not have a proof, it appears likely
that something like x2

1+x3
2+x7

3+x17
4 cannot be represented as a sum of three products only,

even over C.

Example 10. R = R[x1, x2, . . . , xn]/A
3

A = B = (x1, x2, . . . , xn)
A2 = (x2

1, x
2
2, . . . , x

2
n, x1x2, x1x3, . . . , x2x3, . . . , xn−1xn)

N (A,B) = n, NB(A,B) = n

Proof: Based naivety is calculated just like in example 9, and we only need to prove the
lower bound on naivety.

We will show that NA,A(x
2
1 + · · · + x2

n) ⩾ n. Assume that it is lower than n and
x2
1 + · · · + x2

n = a1b1 + · · · + an−1bn−1, where ai, bi are homogeneous polynomials of de-
gree 1 (restriction as in example 9). This means that the set of roots of each product aibi
is the union of two linear subspaces of codimension 1 (those subspaces may be equal). That
means that the set of roots of a1b1+a2b2 is a union of some subspaces of codimension at most
2. By adding yet another product, we may only increase the codimension by at most 1, so in
the end, the set of roots of the whole sum will be a union of some subspaces of dimension at
least 1. However x2

1 + · · · + x2
n has only one root—(0, 0, . . . , 0)—and is positive everywhere

else. Thus we have reached the desired contradiction.
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Notes: This example is a sort of counterpoint to example 9. Their relationship and signifi-
cance will be explained in 5.5. Note that by Observation 5, the quotient by A3 is not actually
necessary.

The same proof would not work over C—squares would not be necessarily positive and
the set of roots of the left side would be bigger.

Example 11. R = C[x1, x2, . . . , x2n]/(A
3+(xixj|i ̸= j ∧ (i, j) /∈ {(1, 2), (3, 4), . . . , (2n− 1, 2n)}))

(we want to ignore all mixed terms except for x1x2, x3x4, . . . and anything of degree 3 and
higher)
A = B = (x1, x2, . . . , x2n)
A2 = (x2

1, x
2
2, . . . , x

2
2n, x1x2, x3x4, . . . , x2n−1x2n)

N (A,B) = 1, NB(A,B) = 2

Proof: The basis has only two elements: x1+x2+x3+x4+· · ·+x2n and x2+x4+x6+· · ·+x2n.
To represent an element of AB, we choose the coefficient from A for the first basis element in
such a way as to get appropriate coefficients next to each square (ignoring the change to coeffi-
cients of mixed terms). Then, we choose a coefficient of the form a1x1+a3x3+· · ·+a2n−1x2n−1

for the second one in order to get appropriate coefficients for the mixed terms without chang-
ing the coefficients next to each square.

We cannot use a basis with only one element—multiplying elements of A by it would be
a linear transform, A has dimension 2n (over C), but A2 has dimension 3n, so we would not
be able to ever get the whole A2.

The naivety is 1, since any element of A2 can be written as

(α1x
2
1+α1,2x1x2+α2x

2
2)+(α3x

2
3+α3,4x3x4+α4x

2
4)+· · ·+(α2n−1x

2
2n−1+α2n−1,2nx2n−1x2n+α2nx

2
2n).

We can write each of the terms in parentheses as a sum of two squares (by using Lagrange’s
completing the square, as in example 9), and hence a product aibi. Finally, we can write the
sum of these products as (

∑
ai) (

∑
bi), since all mixed terms between ai and bj are set to

zero if i ̸= j.
Notes: This example is obviously a modification of example 9 and will be elaborated upon
in 5.5. However, it has certain noteworthy qualities: it provides and example with N = 1
where neither of the ideals is principal (and the ring is Noetherian), and even though the
ring and ideals depend on a parameter n, neither the naivety nor based naivety do. It also
exhibits a certain "based naivety surplus" (similarly to example 4), this time because the
coefficient for the second basis element can come from a limited subset of A. This "surplus"
can be utilized by reintroducing certain mixed terms—at least for n = 2, the term x1x3 can
be re-added without changing the outcome.
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Example 12. R = C[x1, x2, . . . ] = C[x1] ∪ C[x1, x2] ∪ C[x1, x2, x3] ∪ . . .
A = B = (x1, x2, . . . )
A2 = (x2

1, x
2
2, . . . , x1x2, x1x3, x2x3 . . . )

N (A,B) = ω, NB(A,B) = ω

Proof: Any minimal representation of a homogeneous c ∈ AB of degree 2 contains a finite
number of polynomials, which are in turn finite sums of monomials. This means that the
representation is contained in some ring C[x1, . . . , xn]. Moreover, using variables with indices
higher than those appearing in c may not shorten the minimal representation of c, as we could
simply set those superfluous variables to 0 and get a shorter representation. As a result, c
may have naivety as high as

⌈
n
2

⌉
(by example 9 and observation 5). That means that there

are elements with arbitrarily high naivety. We have the obvious countable basis (x1, x2, ...).
Notes: This example is neither aesthetically pleasing nor particularly valuable. Its purpose
is simply to show that naivety may be infinite.

Example 13. R = Fp[x1, x2]/A
3 (where p ∈ {3, 5, 7, 11, 13, 17, 19, 23} and Fp is the field with p

elements; we want to ignore anything of degree 3 and higher)
A = B = (x1, x2)
A2 = (x2

1, x1x2, x
2
2)

N (A,B) = 2, NB(A,B) = 2

Proof: The naivety in this example was proven by the computer program described in 4.2.2.
Based naivety is bounded from above by the generator bound, and from below by naivety.
Notes: This example is not particularly meaningful, since the naivety is bounded by 2 any-
way. With only two variables, quite high values of p can be calculated in reasonable time.
The following example has more interesting behavior.

Example 14. R = Fp[x1, x2, x3, x4]/A
3 (where p ∈ {2, 3, 4, 5} and Fp is the field with p

elements; we want to ignore anything of degree 3 and higher)
A = B = (x1, x2, x3, x4)
A2 = (x2

1, x
2
2, . . . , x1x2, x1x3, . . . )

N (A,B) = 3, NB(A,B) = 4

Proof: The naivety in this example was proven by the computer program described in 4.2.2.
The proof that NB(A,B) = 4 is analogous to that in example 9.
Notes: This example is effectively a finite variant of examples 9 and 10. Due to said
finiteness, we can study the sizes of A ◦ B, (A ◦ B) + (A ◦ B), and AB (see 5.1). Moreover,
the naivety is sharply between NB and 1

2
NB (see 5.5). Of note is also the fact that naivety

remained the same for F4, even though 4 is not a prime number.

The time to calculate this example was measured in hours. It is easy to see that the
number of variables has the highest impact—even for F2, an example with 8 variables would
take too long on a personal computer.
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4.2 Notes on calculating naivety

As a thorough reader may have already noticed, calculating naivety is a rather annoying
process—at this point, there are no general methods and each small group of examples
needs to be considered separately. Even though the examples above were mostly in various
types of polynomial rings, they still required separate techniques, some of them somewhat
burdensome (e.g. examples 7 and 9)—and they would likely grow much more difficult if we
complicated these examples even slightly. This shows that stronger theorems or techniques
would be quite beneficial, should a need to calculate naivety arise. Based naivety is usually
easier to calculate (but not always—see example 7, which can be calculated much faster using
lemma 14, if we do not care about based naivety), since finding a basis is often simpler than
proving that each element has a sufficiently short representation.

4.2.1 Computer calculations

Attempts to calculate naivety using a computer (or a particularly stubborn friend) face the
fundamental issue that computers work best with finite objects, and few rings are finite.
Sometimes, one can reduce the example to a finite case using quotients (see examples 5
and 6) and try to control whether the naivety decreased in the process (see 5.2), but in general
calculating naivety with brute force does not appear to be feasible.

It would be greatly beneficial to find some sort of semi-invariant that behaves nicely with
both multiplication and addition, or even addition alone. For example, let f : R → N be a
function such that:

1. f(a+ b) ⩽ f(a) + f(b)

2. f(ab) ⩽ f(a)f(b)

3. for each n ∈ N, the set {r : f(r) = a} is finite.

If we had such a function f and a given c ∈ AB, we could determine the naivety of c by
checking all representations such that f(ai) ⩽ f(c) and f(bi) ⩽ f(c). Due to property 3.,
we would only need to check finitely many representations, even if A and B are infinite.
Of course we could define properties 1. and 2. somewhat differently, but even then finding
such a function appears to be difficult, if not impossible for most rings.

None of the naturally-defined functions seem to be of much use. For example, the degree
of a polynomial (over an integral domain) does not increase when multiplying by another
polynomial—but it can decrease arbitrarily with addition (although hopefully some form of
the reasoning from 5.3 could catch such cases). Similarly, the norm in algebraic integer rings
([1], p. 414) is multiplicative, which is a very nice property, but again—naivety is actually
more of an additive phenomenon. Finding functions that behave nicely with addition seems
generally much harder.
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Calculating based naivety with brute force may actually be harder than calculating regu-
lar naivety—while the latter can keep adding A ◦B to itself one iteration at a time (see next
subsection), checking each of the |B|NB(A,B) possible bases requires substituting |A|NB(A,B)

sets of coefficients every time (and multiplication, which is usually slower). However, this
program may be lucky quite often, finding a valid basis very quickly, especially if we can
provide it with good heuristics to let it start with the most promising potential bases.

Nonetheless, this does not mean that computers are of no use altogether. For example,
the density in 5.1 was calculated using a simple Monte Carlo algorithm. Hopefully, as more
estimates and theorems are discovered, more calculations will be possible to automate, or
outright avoid.

4.2.2 Implementing a computer program

Writing a simple program to calculate naivety for finite ideals is not particularly difficult.
Checking each representation would be too slow, but we can take advantage of "stratification"
(see subsection 5.1)—A◦B is the set of all elements of naivety 1 (and zero), (A◦B)+(A◦B)
is the set of all elements of naivety 1 and 2 etc. That means that we can simply generate
A ◦ B, mark all of its elements as having naivety 1, then calculate X2 = (A ◦ B) + (A ◦ B)
(by simply performing all pairwise additions), mark all its elements that are still unmarked
as having naivety 2, calculate X3 = X2 + (A ◦B) and so on. Note that we need to know AB
beforehand (to prepare the array which will contain the naivety of each element). We also
need to know when to terminate the process—in most cases, the generator bound provides
a good stopping condition, but we can also check whether Xi+1 is any bigger than Xi (since
we need to perform all additions anyway) or check whether each element of AB already has
a naivety assigned. The fact that this program calculates naivety of each element can be
really useful for analyzing the additive structure—and I have not found a way to calculate
the general naivety faster.

Using an object-oriented language is recommended, since we can easily input different
ideals and rings into the same chassis. For calculating certain examples in this thesis, I
implemented the above concept in Python—due to both the ease of overloading operators
such as + and ∗, and the general simplicity of its code. For most examples, the difference
in speed as compared to a faster language would not change much—see for instance the
huge polynomial growth in example 14, where even p = 7 would take several days. Even
storing the results can prove problematic—human-readable text files can easily reach dozens
of gigabytes.

5 Ideas and conjectures
This section contains the most promising leads that could result in significant advancements
if studied more deeply. Some of them propose a non-directly-algebraic outlook, in an attempt
to broaden the set of possible approaches to the problem. At this point, it is hard to judge
which one is the most likely to be the right way forward, and it is quite likely that true
advancement will require a combination of them, or even one that I have not yet considered.
Nonetheless, they provide stems from which new ideas can blossom.
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5.1 Stratification

By X +Y we denote the sum set {x+ y : x ∈ X, y ∈ Y }. By iterated sums of a set we mean
X, X +X, X +X +X and so on.

Despite using many terms related to multiplication, naivety is primarily an additive
phenomenon—we take X, a subset of an additive (abelian) group, which acts as a sort
of "seed" or "motherlode", and then build the iterations X + X, X + X + X and so on,
which are the "layers" or "strata". The knowledge that X = A ◦ B for some ideals, or
even that multiplication exists, is not needed to define and study the problem. Of course,
absorptivity is an extremely strong property which we would like to use—for instance it
reflects the whole ring’s structure inside each absorptive set—but it is not strictly necessary.
Technically, commutativity or group properties (other that associativity) do not seem to be
strictly necessary either.

Such a perspective has a few benefits: most notably, it is universal, potentially allowing
us to answer problems unrelated to rings, as well as use more general methods of additive
combinatorics (see [4]), some of which are mentioned below. It has two significant downsides,
however: we lose the strong properties related to multiplication, and most methods of additive
combinatorics use the notion of the size of various sets, as we shall now see. We will discuss
this problem later.

Tao and Vu’s book defines the doubling constant of a set: σ[A] = |A+A|
|A| , which is meant to

measure the "additive disorder" of the set. A regular set, such as an arithmetic progression,
will have a small doubling constant, while for a "generic" or "random" set it may reach
1
2
(|A|+ 1) ([4], p. 57). For the purpose of measuring strata growth, we would likely want to

calculate the similar number |S+X|
|S| , where S = X+ ..+X is one of the strata. Showing some

sort of bound on this number—for example that it decreases as we take bigger strata—could
help provide strong bounds on naivety.

Other definitions worth mentioning are that of additive energy and Ruzsa distance, both
defined between two sets. The former is simply the number of non-unique addition results:
E(A,B) = | {(a, a′, b, b′) ∈ A× A×B ×B : a+ b = a′ + b′} |, while the latter is defined as

d(A,B) = log
|A−B|

|A|1/2|B|1/2
.

Pairs of sets with small distance or big additive energy have a lot of additive structure in
common. We would likely want to study the distance or energy between the seed and the
strata, although attempting to measure them between two particular stratums may yield
some results as well. Studying the "distribution" of additive energy, i.e. which numbers in
the sum set are achieved in how many different ways, could also reveal certain patterns (such
as those related to the density described below).

23



Using these definitions, [4] provides a number of lemmas that give bounds on iterated
sum sets (chapter 2). The iterated sum set bounds in chapter 2 are somewhat similar to the
question of naivety, except in a "non-limited" setting, where the iterated sets generally keep
growing. Passing from the non-limited to the limited setting may not be too hard—if we
take some (finite) subset X of the additive group of integers and consider the iterated sums
of it (X,X +X,X +X +X, . . . ), it is quite likely that after a while it will have a strongly
structured mid-section (an arithmetic progression, typically just consecutive numbers), and
only the extremes will be more disorganized. Ignoring this structured section may hopefully
"limit" the problem sufficiently even if the additive group we are working in is infinite. For
a formalization of this intuition see [4] (section 4.7 and chapter 12).

One idea which I have not encountered anywhere is trying to "cull" the strata. Given a
stratum S, we would like to determine the smallest possible S ′ ⊂ S such that S+X = S ′+X.
We can even go further: maybe there is some S ′′ ⊂ S such that S ′′ + X ̸= S + X, but
S ′′+X+X = S+X+X. We may even attempt to cull the seed itself. In this way, we could
attempt to determine which elements are actually necessary, and which are just variants of
others (of course it is quite likely that there will be a few different minimal sets with this
property). This idea seems rather strongly correlated with absorptivity—it is quite likely
that at least the integer multiples of other elements could be culled quite commonly, since
they can be created using addition alone (although care must be taken to avoid increasing
the required amount of summands).

As we have seen, methods of additive combinatorics generally rely on the notion of the
size of sets—usually simply their cardinality. This is a serious problem, since most rings (and
ideals therein) are infinite. Of the examples provided, only examples 6, 13 and 14 are finite.
Of course sometimes we may force an example to be finite by using quotients, but it does
not always preserve the additive structure (see 5.2). On Z, we can define the natural density
of a set by

δ(A) = lim
n→∞

| {a : a ∈ A, |a| ⩽ n} |
n

.

This can be generalized to other rings: for polynomials and other rings with structure similar
to Zn, we may expand the above definition in one of the natural ways: iterating limits (one for
each dimension), or bounding each coordinate by the same n. For instance, take the ring Z[x]
and the ideals A = (x, p), B = (x, q) (where p, q are distinct primes). I wrote a simple Monte
Carlo program that chose a random polynomial of degree ⩽ d by uniformly generating d+ 1
coefficients from the (integer) interval [−M,M ]. Then, it checked whether that polynomial is
in A◦B by finding its decomposition into irreducible polynomials and checking the divisibility
of their constant terms by p and q. The resulting density was consistent with the formula

δ(A ◦B) =
1

pq
·

((
1

p

)d

+

(
1

q

)d

−
(

1

pq

)d
)
.
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This formula gives exactly the density of "simple" polynomials from A ◦ B—those that
are products of either p or q by some element of the other ideal (by the inclusion-exclusion
principle). Moreover, culling all other polynomials from A◦B does not increase the naivety—
since we can set any coefficient we want for each degree separately, as p and q are coprime.
This means that p and q are a sort of "naive basis taken from both ideals" (5.6 discusses a
similar concept).

Of note is also the fact that when the limit M was small, the calculated density of
A ◦B was visibly higher, implying that "complex" polynomials are more common when the
coefficients are close to 0. The density of the entire AB = (x, pq) (limited to degree ⩽ d)
is obviously equal to 1

pq
regardless of d, and the density of A ◦ B is arbitrarily small for big

values of d, so density can grow arbitrarily when taking the sum set—which, unluckily, makes
it less useful. A similar behavior is observed for the set of prime numbers, which has density
0 with the above definition, but the set of sums of two primes has density 1 (which follows
directly from [7]).

We could also try to extend the definition of density on Z into more general rings by
"probing" sets with elements. If we take an element r ∈ R, then the set of its integer multiples
r, r + r, r + r + r, . . . ,−r,−r − r, . . . can be identified with Z (or Zp, which makes density
simply a finite ratio). To measure a set A ⊂ R, we may see how many of these multiples lie in
A, and use the aforementioned definition of density on it. A likely conjecture is that—under
reasonable assumptions—the set of resulting densities (for varying r and a fixed A) that are
not 0 will have a well-defined positive infimum, which we may call the density of A (we
cannot simply choose a single universal r to probe with, since for instance the set of even
numbers has density 1

2
if probed with 1, but density 1 if probed with 2—however probing all

sets with a fixed r may yield some results). If we manage to find a good definition of density
on another ring that commonly has an image in other rings, we could also use multiples by
it instead of Z. Absorptivity should be extremely helpful for such a definition of density, as
it gives the set a regularity in terms of multiples of specific elements.

The aforementioned problem with this density growing unpredictably when taking the
sum set means that it cannot be directly substituted for cardinality in additive combinatorics
lemmas, but nonetheless it may turn out useful, especially if it is possible to calculate it using
Monte Carlo methods in other rings as well.

If the perspective presented in this section ever evolves into an actual stream of research,
I would like to propose the name "limited additive combinatorics", referencing the fact that
most commonly (at least in the case of naivety), the strata eventually stop growing. In fact,
assuming that they do could provide a vital handhold for studying such problems without
the benefits of having an absorptive set in a ring.
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5.2 Quotient rings

Note that this section mixes quotient and homomorphism notations—the former is better for
the intended intuition, but the latter is usually symbolically cleaner.

We have the simple observation 5, which tells us that passing to a quotient ring does not
increase naivety. However, a bit more can be said about such a situation. Let R be a ring
and A,B ideals in it, as usual, and let Q be any ideal in R (the kernel of a homomorphism f).
We will be moving from R to the quotient ring R/Q, which is equivalent to setting every
element of Q equal to 0. Obviously (A/Q)(B/Q) = AB/Q.

The homomorphism f partitions AB into equivalence classes (fibers) by the simple re-
lation c ∼ d ⇐⇒ f(c) = f(d). We will denote these fibers by f−1(c′) (where c′ ∈ AB/Q).
We know from observation 5 that the naivety of each element of f−1(c′) (over A,B) cannot
be smaller than the naivety of c′ over A/Q,B/Q. Moreover, we have the following:

Observation 13. The set f−1(c′) contains some element with naivety precisely equal to
NA/Q,B/Q(c

′).
The proof is simple: we can push a minimal representation of c′ back through f (in any of
the possible ways) to get a representation of the required element, of the desired length.

If AB ⊆ Q (or even A ⊆ Q or B ⊆ Q), the whole situation becomes trivial, as
AB/Q = (0) (or at least one of A/Q,B/Q is (0)). This means that there are—roughly
speaking—five interesting cases:

1. Q ⊊ AB

2. Q ⊊ A (and 1. does not hold)

3. A ∩Q ̸= (0), B ∩Q ̸= (0) (and 2. does not hold)

4. A ∩Q ̸= (0), B ∩Q = (0)

5. (A ∪B) ∩Q = (0)

Of course for cases 2 and 4 we may as well switch the roles of A and B, which changes
little in a commutative ring. We could further subdivide these cases by specifying the relation
of AB and Q. For the first case—whose assumption is intuitively strongest—we have the
following lemma:

Lemma 14. Let Q ⊊ AB. Assume the naiveties of elements of Q (over A,B) are bounded
from above by l. Let c′ ∈ (AB/Q) and NA/Q,B/Q(c

′) = k. Then for any c ∈ f−1(c′), we have
NAB(c) ⩽ k + l.
Let d be the element of smallest naivety over A,B in f−1(c′)—we know that d exists from
observation 13. Let d = a1b1 + · · · + akbk be its minimal representation. Since c and d
are in the same fiber of f , we know that there is a q ∈ Q such that c = d + q = a1b1 +
· · · + akbk + q. But q has a representation of length at most l. That means that the above
equality expands to a representation of c of length at most k + l. Finally, this means that
N (A,B) ⩽ N (A/Q,B/Q) + l.
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This lemma could be used to get the bound on naivety in examples 4 and 7 from, respec-
tively, examples 5 and 6 (using observation 11 to get l = 1). Especially in case of example 7,
it is a much more painless method to get that bound (with the trade-off of not bounding
based naivety).

This lemma also gives us the (probably unsurprising) intuition that if Q is a subideal
of AB with small naivety, then the additive structures of AB and AB/Q are relatively similar.
In a way, this defines which Q we can regard as "small". If we could find another (compatible)
definition of smallness of Q, we could in turn determine which elements of AB have small
naiveties.

Cases 2, 3, 4, and 5 do not have their own lemmas yet. Intuitively, one would expect
that case 5 would either evade description entirely, or that when moving to a quotient by a Q
that is completely disjoint with both A and B, the additive structure would not change
significantly. We may however note that in case 2, we could first move to the quotient by
Q′ = Q ∩ AB, which is case 1, and then to the quotient by Q′′ = Q/Q′, whose intersection
with AB/Q′ is null. It is unclear whether such a two-step consideration would weaken any
resulting bounds, but it may make use of lemmas with stronger assumptions.

This whole deliberation could provide new results in two ways: firstly, the partitions into
fibers by different Qs could provide insights into the additive structure of AB—especially
if many of those partitions are "independent" (meaning, for instance, that the intersections
f−1(c) ∩ g−1(c) ∩ . . . are small), as then the naivety of each element of AB is controlled by
several varied bounds. Secondly, it could allow for naivety to be controlled with a some-
what category-theoretic approach, where we would start with some uncomplicated, partially
universal ring (such as polynomials over something) and use the naivety in it to control the
naivety in its quotient rings. Polynomials in infinitely many variables over Z are, technically
speaking, a universal ring, but constructing all rings directly as quotients of it appears too
impractical.

Due to the dependence on representations of elements, it seems less likely that this method
could provide any strong estimates on based naivety. Nonetheless, a similar perpective is
briefly mentioned in 5.5.

5.3 Folding

Let c = a1b1 + · · ·+ akbk be a minimal representation of c. Note that if for some i, j we had
ai = aj, we could collect ("fold") two products into a single one: aibi+ajbj = ai(bi+bj) (since
bi + bj is obviously in B), thus shortening the representation. Obviously the same applies if
bi = bj. We can take this reasoning further—it is sufficient that ai = d1a and aj = d2a for
some a ∈ A, as then we have aibi + ajbj = a(dibi + djbj), using both closure under addition
and absorptivity of B. This means that a minimal representation may not have two ai, aj
(or bi, bj) with a common divisor in their respective ideal.
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Unfortunately, irreducible elements are quite common in most rings (and an irreducible ai
will obviously not have common divisors with anything), and even if ai, aj do have a com-
mon divisor, it need not lie in A. As a result, most non-minimal representations cannot be
shortened—nor even detected—in this way, and this observation can only catch some obvi-
ously bad ones. However, the idea itself could be expanded further. Perhaps there are such
αi, αj such that (ai+αi)bi+(aj+αj)bj = aibi+ajbj and (ai+αi), (aj+αj) do have a common
divisor in A? Perhaps there is some other adjustment possible? Perhaps adding two new
(opposite) terms to the representation can trigger a "chain reaction" of folding?

Determining whether it is possible to fold a given representation—either using the above
ideas, or some other method—could lead to easier methods of finding lower bounds on naivety.
For instance, if one could prove that (for some specific A,B) as long as a representation is
longer that some k, we may fold two of its elements, then it would imply that N (A,B) ⩽ k.
Since this perspective could likely utilize otherwise unused properties of the ring or specific
ideals, such techniques could end up quite valuable for finding both upper and lower bounds
on naivety. The downside is that they would likely be quite hard to generalize efficiently,
depending on the specific qualities of each particular example—however, we may yet find a
beautiful and general theorem as well.

5.4 Preimage in matrices

Let A = (a1, . . . , an) and B = (b1, . . . , bk) be finitely generated ideals in a commutative
ring R. We will write a for the vector (a1, . . . , an)

⊤, and b analogously (all vectors are
vertical by default). Let Mn×k(R) be the set of n × k matrices over R. We define the
function Fa,b : Mn×k(R) → R by

Fa,b(M) = a⊤Mb.

This function is obviously "linear" over R, so in particular it is a homomorphism of the
additive groups of both rings.

Let On,k =
{
vw⊤ : v ∈ Rn,w ∈ Rk

}
be the set of matrices of rank 1 (and the zero

matrix), i.e. those matrices that are outer products of vectors. The elements of A ◦ B are
products of elements of A and B, which in turn are linear combinations of the generators.
This means that

A◦B =

{(∑
i

riai

)
·

(∑
j

sjbj

)
| ri, sj ∈ R

}
=

{∑
i,j

airisjbj

}
=
{
a⊤rs⊤b

}
=
{
Fa,b(rs

⊤)
}

or in other words
F−1
a,b[A ◦B] ⊇ On,k.

This may look unimpressive, but note that while A◦B is obviously dependent on A and B,
On,k depends only on n and k. This means that we have found a "universal preimage" for
ideals in R that have up to n or k generators, respectively (we can add fake generators equal
to 0 if they have less).
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Mn×k(R) is not a ring, but it is a module over R, and observation 5 still applies. That
means a lot of the reasoning in 5.2 still applies as well. In particular, the preimage of c
through Fa,b contains matrices of rank at least N (A,B)—including at least one with exactly
that rank. Obviously, F−1

a,b[AB] = Mn×k(R), since AB is generated by the products aibj.
The fact that the rank of a matrix is bounded by either of its dimensions is a direct translation
of the generator bound. However, once we have added On,k to itself N (A,B) times (which
can be less than n and k), the image will already be all of AB—in fact, the image will always
be stratified as if we were simply using A ◦B as the seed (see 5.1) instead of using On,k and
moving through Fa,b.

Since Fa,b is an R-module homomorphism, the structural similarity is even deeper.
The image of a submodule C of Mn×k(R) is an ideal in R. If On,k ⊆ C, then A◦B ⊆ Fa,b(C),
and conversely if On,k ⊇ C then A ◦ B ⊇ Fa,b(C). Of course Fa,b(C) may be (0) or (1), but
in general the partial order of ideals in R is a "flattening" of the partial order of submodules
of Mn×k(R).

The problem with this method is that the matrices are not necessarily square (which
can be solved with fake generators), and that they are over a ring instead of a field. Take
for instance example 9—even though its proof uses matrices, they are matrices over C, and
not over R = C[x1, . . . , xn]. This makes the matrices more complicated and necessitates
re-checking popular facts (we cannot even interpret the rank of a matrix as the dimension
of a linear space spanned by its columns). We could interpret them as matrices over the
fraction field of R, but then one has to be careful, as not all (but possibly some) matrices
with entries from outside R will give valid elements of AB—or even of R.

Despite these difficulties, this technique allows for controlling whole classes of ideals
at once, which may be extremely helpful for determining the "naive properties" of the given
ring as a whole. Moreover, the strong structural similarity and the analogue of observation 13
can help determine properties of elements that (in relation to A and B) determine a given
element’s naivety. Perhaps some module other than Mn×k(R) could retain this "universality"
while being easier to work with, but it seems most likely that matrices are the best option.
Additionally, based naivety works quite well with this perspective (although it does not make
use of known terms such as rank directly).

5.5 Based naivety bounds

In examples 4 to 7 and 9 to 11, the following curious property holds:

N ⩾
1

2
NB. (1)

Moreover, quite commonly in these examples we have

N = NB. (2)
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Although examples 3 and 8 show that neither of these facts is universal, they appear to
be prevalent enough to warrant a conjecture (especially since those examples are somewhat
artificial). It seems (1) and (2) may hold when A and B are sufficiently similar. Moreover, it
looks like in examples 9 and 11 naivety is smaller than based naivety due to a combination
of two properties—C has square roots of each element, and the sum of two squares over C
is a product of two linear factors (which is a direct result of the existence of a square root
of −1). Example 10 does not have the latter, but does have the former (in the sense that at
least positive elements have square roots) and indeed it has N = NB. I have been unable
to determine naivety over Q(i), which would be interesting, since this field has the latter
property, but not the former (over Q naivety is the same as over R, as it cannot go higher,
even though the former has neither property). Moreover, I believe that if we stopped setting
the third degree equal to zero, we would get N = NB even over C.

A potential proof that (in certain cases) N = NB would likely need to identify specific
features (such as the existence of square roots or the existence of nontrivial roots of −1)
which cause naivety to be able to be less than based naivety—intuitively, that should happen
commonly, but examples show otherwise. On the other hand, the bound N ⩾ 1

2
NB seems

quite intuitive, as each side has the same amount of "free terms". A potential proof could
use some concept similar to dimension (similarly to example 11). As a side note, even though
I tried multiple variations of example 11 (with or without various mixed terms), I did not
manage to break (1).

Examples 4 and 7 seem to suggest that elements of the basis are commonly simple
combinations of generators of B—sums with coefficients 0 or 1, even. While I strongly
doubt that those elements are always this simple, they do serve a rather similar role as the
generators, and an uncomplicated relationship is entirely possible. Perhaps some proof of
the above propositions can be achieved by "searching" the space of combinations (simple
or not) of the generators, for instance showing that under certain conditions either two
generators can be used in the basis or their sum can, and iterating such a lemma to get a
complete basis.

Alternatively, one could try to find a proof by assuming that the basis is bigger than
N (A,B) (or 2 · N (A,B)) and showing that it allows such basis to be reduced via methods
similar to those described in 5.3. We could also try to control the ideal B′ generated by the
basis and its relation to B. It could also be beneficial to study the effect of moving to a
quotient ring R/Q on based naivety—obviously if some of the basis elements end up being
equal to zero, the based naivety goes down, but perhaps more can be said if we know the
exact relationship of Q and B′.

Examples in which naivety is sharply between NB and
⌈
1
2
NB
⌉

are rather rare—example 14
was only found by a brute force calculation (although the aforementioned one with Q(i) may
end up with naivety being between as well). Since both (1) and (2) are linear bounds,
once we have determined the classes of rings in which those two inequalities hold, one
could expect based naivety to be symmetric in them—or perhaps the assumption that
NB(A,B) = NB(B,A) is needed to prove the inequalities. In either case, since based
naivety is commonly easier to calculate than regular naivety, even a bound with a factor of
2 could prove rather useful, so this perspective is worth studying.
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5.6 Multiple arguments

One might ask—can we define naivety for more than two ideals? As it turns out, that is not
only possible, but there are two competing definitions, loosely mirroring those of tensor rank
and slice rank.

For simplicity, we will define these variants of multiargument naivety for specific elements
(the naivety of the whole product is the supremum of the naiveties of its elements). We show
them for three ideals A,B,C, and refer the reader back to section 2.2 if their extension into
more arguments is unclear.

The "tensor naivety" N t
ABC(d) of an element of ABC is defined as the length of the

shortest representation of the form d = a1b1c1 + a2b2c2 + · · · + akbkck (where of course
ai ∈ A, bi ∈ B, ci ∈ C).

The "slice naivety" N s is defined as the length of the shortest representation that uses
"slices", i.e. products of the form a[bc], b[ac], c[ab], where the brackets mean any element
of, respectively, BC,AC,AB (and not just an element of the naive product). Note that if
we only had one possible form for the slices—say, the first one—then we would simply be
calculating regular naivety over two ideals A and BC.

The product ABC is unsurprisingly equal to (AB)C, and it is also the set of finite sums of
elements of the naive product A◦B◦C = (A◦B)◦C = {abc : a ∈ A, b ∈ B, c ∈ C}. This means
that both N t and N s are well-defined (and finite) for every element of ABC, and that any
element that is not in ABC cannot be represented using their respective representations.

One could try to define multiargument based naivety as well—for the tensor version, we
would simply be choosing the basis from the last ideal and each coefficient would be a product
of elements of all the other ideals. For the slice version, a proper definition seems harder
to find—perhaps we could say the "sliced off" factors, regardless of their ideals of origin,
are to be chosen as the basis beforehand (this was already mentioned in 5.1). Note that
such a definition does not agree with the standard definition on two arguments—although it
may not be greater than the standard based naivety—but still appears to fulfil many of the
basic properties. It may be worth studying in more depth even without considering multiple
arguments.

We can write some simple observations regarding both definitions of multiargument
naivety:

Observation 15. N t(A1, . . . , An) ⩾ N s(A1, .., An).
This follows from the fact that any tensor representation is also a slice representation.

Observation 16. N s(A1, . . . , An) ⩽ N (Ai, A1 . . . Ai−1Ai+1 . . . An).
Any representation over Ai and A1 . . . Ai−1Ai+1 . . . An is obviously also a slice representation.
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Observation 17. N t(A,B,C) ⩾ N (A,B).
Obviously ABC ⊆ AB. Any element of the form aibici is, due to absorptivity of B, also
of the form aib

′
i, so this inequality holds even for particular elements. Of course it can be

expanded to an arbitrary number of arguments (replacing the N by N t), as long as the left
side has more than the right side.

Note that we cannot write a similar inequality for slice naivety—slice representations
over A,B,C and normal representations over A,B both use products that the other side
cannot. Similarly, we cannot hope to write an inequality between N s(A1, A2, . . . , An) and
N s(A1A2, A3, A4, . . . , An)—slicing off an element of A1A2 is valid only for the right side, but
slicing off an element of A1 \ A2 is valid only for the left side.

Observation 18. N t(A,B,C) ⩾ N (AB,C).
Any element of the form aibici is also of the form (aibi)ci, so this inequality holds even for
particular elements. Intuitively speaking, multiplying A and B beforehand means we can use
some high-naivety elements of AB without paying that cost in length.

Observation 19. N t(A,B,C) ⩽ N (A,B) · N (AB,C).
To represent a d ∈ ABC, first we represent it over AB,C as d = [ab]1c1+ · · ·+[ab]kck (where
k = N (AB,C)) and then each of the [ab]i over A,B (with length at most N (A,B)), which
gives us the desired bound. This reasoning can be expanded to show that

N t(A1, . . . , An) ⩽ N (A1, A2) · N (A1A2, A3) · N (A1A2A3, A4) · . . . · N (A1 . . . An−1, An).

Note that this remains true even if we reorder the ideals, thus getting a different "slicing
order". We can make a conjecture that the minimum over all permutations (or, in fact,
parenthetisations) is the actual value of N t(A1, . . . , An), but (for unexplained reasons) I feel
that it will not hold in many cases.

Observations 18 and 19 show that tensor naivety can be approximated (if not outright
calculated) from regular naivety by drawing a binary tree, where the leaves are ideals, and
each node is the product of its two children (which expands observation 19 even further).
Then the tensor naivety of the whole product is no greater than the product of (regular)
naiveties on each node, but also no smaller than each of these naiveties. Moreover, the tensor
naivety of each element of the whole product is not smaller than its (regular) naivety over the
product in each node. As the ideal product is associative, we can draw the tree in multiple
ways, potentially getting different bounds. This, along with observation 17, means that if
we can calculate the naiveties of some sort of "base" ideals, we could get a solid idea of how
naivety (either tensor or regular) looks in the whole ring. For example, in a Dedekind ring
all ideals factor (uniquely) into prime ideals. If the naivety of each pair of prime ideals was 1,
then we would know that the naivety of any pair of ideals in this ring is also 1.
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This perspective is definitely messy, and if we only care about getting results on regular,
two-argument naivety, it will likely not be extremely productive, but it offers us another
connection to the structure of the entire ring instead of focusing on specific pairs (or tuples)
of ideals. Moreover, it can uncover ties with tensor rank and slice rank, connecting naivety
to other branches of research.

6 Closing remarks
At the conclusion of this thesis, it is likely appropriate to ask the question: what next?
Despite being somewhat messy and hard to control, naivety is an interesting question, which
may hopefully inspire advances in commutative algebra, additive combinatorics, or perhaps
even extremal combinatorics or some areas of computing. I believe it is worth studying in
more depth.

This thesis points to a few possible directions: first of all, as painful as it may be,
more examples need to be calculated to inspire or evaluate conjectures. More algebraic
lemmas, and perhaps even theorems could be found. Similar problems need to be explored
and their methods adjusted. Any of the perspectives from section 5 could yield results,
so they need to be researched in depth, and their specific issues faced. The research could
also be expanded into non-commutative rings or other algebraic structures both more general
and specific. There is also a whole list of miscellaneous ideas that I deemed too undeveloped
or far-fetched to put into this thesis. Improved methods of automated calculations could save
some of the effort. And ultimately, it is more than likely that new ideas will appear along
the way.
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