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Report on the doctoral thesis

Theory of models with group actions, with special discourse on theories of fields

by Daniel Max Hoffmann

It is a recurrent theme in model theory to study expansions of structures which are well-understood
from a logical point of view. A notable example, starting with work of Lascar, is the study of
models of a (stable) theory T , which are equipped with a distinguished automorphism named in
the expansion. Around 1990, van den Dries, Macintyre and Wood realized that in the case where
T=ACF is the theory of algebraically closed fields, the corresponding theory admits a model
companion, ACFA, which is the theory of existentially closed difference fields. The fixed field of a
model of ACFA is perfect, pseudo-algebraically closed (PAC), with absolute Galois group Ẑ, i.e.,
by work of Ax, it is a pseudofinite field.

Chatzidakis and Hrushovski studied the theory ACFA from the point of view of geometric model
theory. They showed in particular that (i) ACFA is (super-)simple, (ii) that non-forking inde-
pendence admits a description in terms of algebraic independence – so in terms of non-forking in
the reduct ACF – and that (iii) ACFA eliminates imaginaries, i.e., all definable quotients are iso-
morphic to definable sets. The model theory of ACFA has had important applications to number
theory (Hrushovski’s proof of the Manin-Mumford conjecture) and to algebraic dynamics, the main
model-theoretic result used being Zilber’s trichotomy principle which is true in ACFA. The most
spectacular result, due to Hrushovski, states that ACFA equals the theory of the non-standard
Frobenius automorphism acting on an algebraically closed field. Moreover, ACFA has played an
important role in the abstract development of simplicity theory.

In work of Chatzidakis and Pillay, many basic results have been extended from ACFA to the model
companion of the theory of models of a stable theory T equipped with an automorphism, denoted
by TA if it exists, e.g., (i) and (ii) above. As for (iii), a weak version of it, termed geometric
elimination of imaginaries, holds in TA whenever the original theory T eliminates imaginaries.

For many stable theories T , TA is known to exist, e.g., for differentially closed fields of charac-
teristic 0 or separably closed fields. In general, it is a rather subtle issue whether TA exists for a
given stable theory T . It is an elementary fact, due to Kudaiberganov, that if TA exists, then T
does not have the finite cover property. Baldwin and Shelah gave a complete characterization, in
terms of properties of T , of when TA exists, but this characterization is difficult to use in concrete
situations. In the important special case of a strongly minimal theory T , by a result of Hasson
and Hrushovski, TA exists if and only if T has DMP, i.e., Morley degree is definable in T .



The dissertation of Daniel Hoffmann deals with a variation on this theme. Given a group G and
a theory T , he studies models of T equipped with an action of G by automorphisms. The case
mentioned above thus corresponds to G = Z. For free groups, this had already been studied
previously in some cases. For T the theory of fields, by a result of Hrushovski, for two commuting
automorphisms (i.e., for G = Z × Z), no model companion exists. Sjögren (unpublished, 2005)
has studied the model theory of fields with an action of a group G, for arbitrary G. Below, we
will discuss the relationship between parts of Hoffmann’s dissertation and Sjögren’s work.

In Chapter 2 of his dissertation, Hoffmann undertakes a general study of models of T equipped
with a G-action. The corresponding theory is denoted by TG. The general assumptions are that
T is inductive and admits a model companion Tmc which eliminates quantifiers and imaginaries,
and that TG admits a model companion Tmc

G . Hoffmann observes that already in the case of fields,
it may happen (e.g., when G is finite non-trivial, discussed in Chapter 3) that an existentially
closed (e.c.) model of TG is not an e.c. model of T , and so one may not reduce to the case where
T = Tmc. Moreover, he gives some elementary examples of unstable theories T , where Tmc

G exists
for finite G (dense linear orders, random graph, atomless boolean algebras), contrary to the case
G = Z, where no unstable example is known.

Guided by what happens in the case of fields, Hoffmann calls an extension A ⊆ B of definably
closed substructures of a model of Tmc regular if A is relatively algebraically closed in B, and he
introduces the notion of a PAC substructure of a (large) model D of Tmc, as one which is e.c.
in every regular extension inside D. The relationship with other notions of a PAC substructure
(due to Hrushovski and Pillay-Polkowska, respectively) is discussed. Hoffmann then proves some
general preliminary results around the Galois theory (from the point of view of Tmc) of models of
TG, establishing in particular a very useful characterization of when a G-action may be extended
to a proper algebraic extension (Lemma 2.2.27). From then on, Tmc is assumed to be stable.

We assume now that M̃ = (M,σg)g∈G is a model of Tmc
G , with subset of invariants MG, and

denote by N the algebraic closure of MG in the sense of Tmc. Hoffmann makes the interesting
observation that the canonical epimorphism Aut(N/MG)→ Aut(N ∩M/MG) of profinite groups
is a Frattini cover, and even the univeral Frattini cover in case T is the theory of fields and G is
finite (proved in Chapter 3). He shows that M is a PAC substructure of the ambient model of
Tmc. If G is finitely generated, in which case MG is definable in M̃ , he proves that MG is PAC as
well, and moreover a bounded substructure, i.e., the size of the Galois group (in the sense of Tmc)
of M is bounded independently of the model M̃ . Simplicity of MG then follows by a theorem of
Pillay-Polkowska.

As main results, Hoffmann shows, assuming a technical condition, that (i), (ii) and (iii) from above
all hold in Tmc

G : the theory Tmc
G is simple, with forking given by Tmc-forking of the corresponding

G-orbits (Theorem 2.3.22), and Tmc
G has geometric elimination of imaginaries, i.e., every imaginary

element is interalgebraic with a real tuple (Theorem 2.3.35). The proof techniques for these results
are similar to the case where G = Z, but some additional twists are needed, due to the fact that
M is in general not a model of Tmc. The technical condition is shown to hold in the important
case where M is bounded, and Hoffmann proves that this is the case e.g. for G finite.

Chapter 3 of the thesis is mainly based on the article Existentially closed fields with finite group
actions (joint with Kowalski, accepted for publication in J. Math. Log.), and it is devoted to a
study of the case where T is the theory of fields and G is a finite group. With the help of geometric
axioms, in the spirit of the geometric axioms for ACFA, Hoffmann introduces a first-order theory
G-TCF in the ring language augmented by unary function symbols for the elements of G. The
main result of the chapter is that G-TCF equals Tmc

G (Theorem 3.1.10), which shows in particular
that the model companion Tmc

G exists and thus that the abstract results proved in chapter 2
apply in this case. Improving on (iii), Hoffmann shows that G-TCF eliminates imaginaries, once
finitely many elements are named with constants. Hoffmann establishes the following interesting
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algebraic characterizations of models of G-TCF: if G acts faithfully on a perfect field K, then the
structure (K,σg, g ∈ G) is a model of G-TCF if and only if the subfield of invariants KG is PAC
and the G-action may not be extended to any proper algebraic extension of K; moreover, this
is equivalent to the condition that any K-irreducible variety defined over KG has a KG-rational
point. Furthermore, in case G is (finite) cyclic, Hoffmann exhibits an explicit example of a model
of G-TCF in characteristic p > 0, with underlying field a subfield of Falg

p .

In a short appendix, Hoffmann sketches generalizations of the results of Chapter 3 to finite group
scheme actions which are contained in the article Existentially closed fields with G-derivations
(published in the J. Lond. Math. Soc.) which is joint with Kowalski.

The results obtained in the thesis are strong and satisfactory, and they apply potentially to many
situations. Hoffmann clearly shows that he masters very well the technical material, both from
model theory and from Galois theory. In his work, Hoffmann transposes various concepts from
field theory to arbitrary stable theories in a very nice and fruitful manner.

The dissertation is mostly well written, and the proofs of the main results are all correct. However,
in Chapter 2, there are several inaccuracies: the discussion of the problem of characterising those
stable theories T for which TA exists is not adequate (nfcp is a rather obvious necessary condition,
but the property characterising existence of TA is much more subtle); in Example 2.1.3, the
description of types and the stability spectrum are incorrect as stated; moreover, there are several
issues with Example 2.1.8. I have added to my report a separate list containing details about
these, as well as minor issues and some suggestions on how to improve the presentation.

Some words of critique concerning Hoffmann’s blanket assumption that Tmc
G exists are in order.

Large parts of the material in Chapter 2 could have been developed without this assumption,
working instead with the category of e.c. models. (This is briefly mentioned on page 10 of the
dissertation, but not further pursued.) Moreover, it would have been natural to discuss existence
of Tmc

G for G finite, in the case of other theories T , e.g., for differential fields in characteristic 0.

As I have mentioned at the beginning of my report, fields with G-actions have already been studied
previously by Sjögren in his PhD thesis in 2005, but his results have never been published in a
peer-reviewed journal. In the introduction of their paper Existentially closed fields with finite group
actions, Hoffmann and Kowalski state that they had not been aware of this work, and so it is not
surprising that there is a rather large overlap between Sjögren’s work and the results of Chapter 3
in Hoffmann’s dissertation. Contrary to Hoffmann, Sjögren does not use the blanket assumption
that Tmc

G exists but rather works in the category of e.c. models. Some of Sjögren’s results are
more general than the corresponding results of Hoffmann, e.g., he shows that for arbitrary G, if
(K,σg)g∈G is e.c. , then both K and KG are PAC; and that for G finitely presented, the absolute
Galois group of KG is the universal Frattini cover of the profinite completion of G.

To conclude, Daniel Hoffmann constitutes a very valuable contribution to the model theory of
structures with automorphisms. The work contains strong results both in the general framework
and in the particular case of fields. The overlap with Sjögren’s work is unfortunate, but since the
results were obtained completely independently, this fact does not weigh too much. I recommend
that this thesis be accepted and that Daniel Hoffmann be granted a doctoral degree.

Yours sincerely,

Martin Hils
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List of comments/suggestions (27 refers to page 2, line 7, 27 to page 2, line 7 from the bottom).

• 210: In the definition of κ-saturation, the parameter sets should be of cardinality < κ.
• page 2, 2 lines before 1.2.1: It should be "... every M ′ |= T such that M ⊆M ′, it ..."
• 313: It should be "... p0 is consistent..." instead of "... q is consistent..."
• 44: You should add that you assume char(K) = p > 0 when defining the perfect closure.
• Example 2.1.3: In the middle of page 12 it should be M ∪ (

∏
H<GG/H)ω, where H runs

over finitely generated subgroups of G, as you informed me already some weeks ago (in
an email by Piotr Kowalski). Moreover, there are several other mistakes in this example.
The type of an element x 6∈ G · A is not unique. One also needs to specify the stabilizer
subgroup Gx in order to get a complete type, since the G-action is not free. Consequently,
the cardinality statement about the type space S1(A) is wrong as well. What one gets is
that for λ ≥ 2|G|+ℵ0, Tmc

G is λ-stable. Also, when the example is taken up again (in 2.3.25)
you claim that Tmc

G eliminates imaginaries. But this is not the case. If you add to Tmc for
the "empty" theory T sorts for finite subsets, forcing elimination of imaginaries for Tmc,
then Tmc

G should eliminate imaginaries, though, in the same sorts.
• Example 2.1.5: An easier way to present this would be a Fraïssé amalgamation: The class
C of finite graphs with a G-action is a Fraïssé class (i.e., has (HP), (JEP) and (AP)), and it
is uniformly locally finite. So the theory of the Fraïssé limit of C is ω-categorical, has QE,
and it also follows that it is the model companion of the theory of graphs with a G-action.
• 1513: I don’t understand what you mean by "another additional axiom such as: xd = 1 or
xd = 0" (for some d > 0), as in both cases, in the class of unitary rings, only the 0-Ring
(where 0=1) satisfies the relevant axiom for all x.
• 158+7: The ring R[t1, . . . , te] is in general not of exponent d, as is shown by the following
counter-example: d = 3, R = F2 (which is a ring of exponent d = 3), G = {1}, so e = 1 and
R[t] = F2[X]/(X −X3). Then (1 + t)3 = 1+ t+ t2 + t3 = 1+ t2 6= 1+ t, since clearly t 6= t2

in R[t]. The construction works for d = 2, so the example of Boolean algebras which follows
in Remark 2.1.9 is ok.
• In Example 2.1.10, you may want to mention that G is finite.
• The regularity condition corresponds to stationarity (as mentioned in Remark 2.2.2(1), al-
ready considered in previous work by Hrushovski et al.
• 1918: It should be three times dclDL (N) instead of N .
• 193: You mean Definition 2.2.4 here and not Definition 2.2.5.
• Your definition (2.2.1) of a PAC substructure (PACreg) will in general not be preserved by
≡. It might be interesting to discuss this. On the other hand, in the cases where you prove
that PACreg holds (2.2.45 and 2.2.47), actually something stronger holds, since you know
that you have κ-saturated models of the relevant theory which are PAC.
• 2010: In order to make it work, you need not only mlt(ψ) = 1, but also RM(ψ) = RM(p).
• Remark 2.2.17: Typo: It should be Bi instead of Mi in part 1 (for i = 1, 2).
• In definition 2.2.39, you should require that π is an epimorphism.
• 317: It should be σ̂g ∈ AutL(D/MG), I suppose.
• 3211+12: Typo: It should be twice τ instead of θ.
• Proof of Theorem 2.2.51: One may give a simpler (and also more enlightening) proof of this
result, if one observes first that If P is a PAC substructure of a (large) stable structure D,
then any elementary restriction P ′ 4 P is also a PAC substructure of D. Indeed, if P ′ ⊆M ′

is a regular extension, where M ′ is a small substructure of D, one may place M ′ such that
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M ′ and P are independent over P ′. Setting M := dcl(M ′P ), it follows (by stationarity of
tp(m/P ′) for every finite tuple m from M ′) that P ⊆ M is regular. Then P ≤1 M , so
P ′ ≤1 M and in particular P ′ ≤1 M

′.
Also, in your proof, the structure P constructed in line 2 of page 34 may not be saturated
enough. (It woulld be enough to replace the underlying chain by one of length κ+.)
• It would seem more adequate to prove Lemma 2.3.6 and then get Lemma 2.3.5 as a corollary.
• Remark 2.3.8: The formulation is not clear. You might write something like "If A :=
aclDL (∅) ∩M1 = aclDL (∅) ∩M2 and τ1 and τ2 agree on A, then..."
• 3610: It seems that the argument needs Lemma 2.3.6, and not just Lemma 2.3.5. Also, it
would seem more natural to state 2.3.10 and 2.3.11 in one lemma.
• 374+5: The sentence in parentheses is not clear, and also not needed. Moreover, you may
want to add in 373: "...Lemma 2.2.19 for N = aclCLG(A

′) ⊆ aclDL (A
′) and the action of the

group H, it follows..."
• The proof of (vi) on pp. 38+39 seems much too complicated and may certainly be simplified
considerably (since for any E′-embedding of (N, ρ) into C one gets the independence result
you claim by automorphism invariance of the independence relation in D).
• 424: Should it be "... of aclCLG(Mac1) and C" (instead of aclCLG(Mac1) or even aclCLG(Mbc1))?
• Example 2.3.25: It is not true that Tmc, the theory of an infinite (pure) set, eliminates
imaginaries. It only eliminates them weakly.
• Line 5 of proof of 2.3.27: It might be clearer to write "...let D′

1 be the L-definable closure..."
• It would be good to give the argument for Corollary 2.3.38, namely that G finite implies
that M is Galois bounded (since it is a finite extension of MG which is Galois bounded), so
bounded, so C is bounded.
• In Corollary 2.3.3 (given the previous remark), it might be clearer to state in part (1): "If
C is bounded, in particular if G is finite, ..."
• In Remark 2.3.32 (and also in line 2 of Fact 2.3.33 and in line 2 of Corollary 2.3.34), it should
be "...let q be an extension..." instead of "...let q be its extension..."
• In Theorem 2.3.35, it might be useful if you remarked that the hypothesis of the theorem
implies in particular that Tmc

G is simple.
• 471: It would be even clearer if you wrote "... and so Gd..." instead of "...and so d...".
• 4711: Typo: It should be "final".
• Lemma 3.1.8: You mean "G-transformal field" here.
• Remark 3.3.3: The last equivalence is wrong as stated: It should be "trdeg(Ga(〈GB,GC〉) =
trdeg(Ga/〈GC〉)", i.e. 〈GC〉 instead of 〈GB〉 at the end (which is certainly a typo), but more
importantly Ga instead of a. Indeed, consider the Z/2-action on Q(X,Y ) which interchanges
X and Y . Letting C = Q, B = X + Y and a = X, one gets trdeg(a(〈GB,GC〉) = 1 =
trdeg(a/〈GC〉), but trdeg(Ga/〈GB,GC〉) = 1 < 2 = trdeg(Ga/〈GC〉).
• First line of the proof of Theorem 3.3.7: What you need is that the interpretation is
quantifier-free both ways (which is of course the case).
• In the first commuting diagram on page 65, the vertical on the right should probably be
D[[Y ]] : R[[Y ]]→ R[[X,Y ]].
• In the second (and third) commuting diagram on page 65, elements vm and wm appear which
have not yet been introduced. (Only on page 66 are they introduced.) Also, on top of page
66, FrmGa

is used without having been introduced.
• In the commutative diagram on top of page 66, it should be X in place of R.
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